Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Case Rep ; 22: e933458, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34848676

ABSTRACT

BACKGROUND The COVID-19 global pandemic is ongoing, and despite vaccination efforts, SARS-CoV-2 continues to circulate worldwide. The spectrum of COVID-19 illness is broad, from asymptomatic infection to respiratory failure and acute respiratory distress syndrome (ARDS), and the long-term sequelae of infection are unclear. COVID-19-related pulmonary fibrosis has been previously described in the setting of critical illness and ARDS but has not been well described in cases requiring minimal supplemental oxygen. CASE REPORT We present the case of a 42-year-old man hospitalized with coronavirus disease 2019 (COVID-19) who initially required minimal supplemental oxygen but weeks later developed progressive pulmonary fibrosis requiring high-flow nasal cannula and ICU admission. Using novel computed tomography (CT) imaging processing techniques, we demonstrate progression from initial ground-glass opacities to pulmonary fibrosis and traction bronchiectasis over several months. Additionally, we describe clinical responsiveness to an extended course of corticosteroids. CONCLUSIONS Although pulmonary fibrosis is a known complication of severe COVID-19-related ARDS requiring mechanical ventilation, our report suggests that patients with milder forms of COVID-19 infection may develop post-acute pulmonary fibrosis.


Subject(s)
COVID-19 , Pulmonary Fibrosis , Respiratory Distress Syndrome , Adult , Humans , Male , Pandemics , Pulmonary Fibrosis/etiology , Respiratory Distress Syndrome/etiology , SARS-CoV-2
2.
J Mol Biol ; 429(20): 2975-2995, 2017 10 13.
Article in English | MEDLINE | ID: mdl-28728983

ABSTRACT

The recruitment of transcriptional cofactors by sequence-specific transcription factors challenges the basis of high affinity and selective interactions. Extending previous studies that the N-terminal activation domain (AD) of ETV5 interacts with Mediator subunit 25 (MED25), we establish that similar, aromatic-rich motifs located both in the AD and in the DNA-binding domain (DBD) of the related ETS factor ETV4 interact with MED25. These ETV4 regions bind MED25 independently, display distinct kinetics, and combine to contribute to a high-affinity interaction of full-length ETV4 with MED25. High-affinity interactions with MED25 are specific for the ETV1/4/5 subfamily as other ETS factors display weaker binding. The AD binds to a single site on MED25 and the DBD interacts with three MED25 sites, allowing for simultaneous binding of both domains in full-length ETV4. MED25 also stimulates the in vitro DNA binding activity of ETV4 by relieving autoinhibition. ETV1/4/5 factors are often overexpressed in prostate cancer and genome-wide studies in a prostate cancer cell line indicate that ETV4 and MED25 occupy enhancers that are enriched for ETS-binding sequences and are both functionally important for the transcription of genes regulated by these enhancers. AP1-motifs, which bind JUN and FOS transcription factor families, were observed in MED25-occupied regions and JUN/FOS also contact MED25; FOS strongly binds to the same MED25 site as ETV4 AD and JUN interacts with the other two MED25 sites. In summary, we describe features of the multivalent ETV4- and AP1-MED25 interactions, thereby implicating these factors in the recruitment of MED25 to transcriptional control elements.


Subject(s)
Adenovirus E1A Proteins/metabolism , Mediator Complex/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins/metabolism , Adenovirus E1A Proteins/chemistry , Cell Line, Tumor , Electrophoretic Mobility Shift Assay , Humans , Magnetic Resonance Spectroscopy , Mediator Complex/chemistry , Models, Biological , Molecular Docking Simulation , Protein Binding , Protein Interaction Mapping , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins c-ets , Proto-Oncogene Proteins c-fos/chemistry
3.
Nucleic Acids Res ; 45(5): 2223-2241, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28161714

ABSTRACT

Autoinhibition enables spatial and temporal regulation of cellular processes by coupling protein activity to surrounding conditions, often via protein partnerships or signaling pathways. We report the molecular basis of DNA-binding autoinhibition of ETS transcription factors ETV1, ETV4 and ETV5, which are often overexpressed in prostate cancer. Inhibitory elements that cooperate to repress DNA binding were identified in regions N- and C-terminal of the ETS domain. Crystal structures of these three factors revealed an α-helix in the C-terminal inhibitory domain that packs against the ETS domain and perturbs the conformation of its DNA-recognition helix. Nuclear magnetic resonance spectroscopy demonstrated that the N-terminal inhibitory domain (NID) is intrinsically disordered, yet utilizes transient intramolecular interactions with the DNA-recognition helix of the ETS domain to mediate autoinhibition. Acetylation of selected lysines within the NID activates DNA binding. This investigation revealed a distinctive mechanism for DNA-binding autoinhibition in the ETV1/4/5 subfamily involving a network of intramolecular interactions not present in other ETS factors. These distinguishing inhibitory elements provide a platform through which cellular triggers, such as protein-protein interactions or post-translational modifications, may specifically regulate the function of these oncogenic proteins.


Subject(s)
Adenovirus E1A Proteins/chemistry , DNA-Binding Proteins/chemistry , DNA/chemistry , Intrinsically Disordered Proteins/chemistry , Protein Processing, Post-Translational , Proto-Oncogene Proteins/chemistry , Transcription Factors/chemistry , Acetylation , Adenovirus E1A Proteins/genetics , Adenovirus E1A Proteins/metabolism , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , DNA/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Kinetics , Lysine/chemistry , Lysine/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-ets , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL