Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Gels ; 10(2)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38391464

ABSTRACT

Most industrial gels are prepared as apparently isotropic and homogeneous materials through a preparation process encompassing alterations in temperature, application of isotropic mechanical stress, exposure to high-energy electromagnetic waves, and mixing with cross-linkers (gelators) [...].

2.
Gels ; 9(6)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37367148

ABSTRACT

Gel growth induced by contact of polymer solutions with crosslinker solutions yields an emerging class of anisotropic materials with many potential applications. Here, we report the case of a study on the dynamics in forming anisotropic gels using this approach with an enzyme as a trigger of gelation and gelatin as the polymer. Unlike the previously studied cases of gelation, the isotropic gelation was followed by gel polymer orientation after a lag time. The isotropic gelation dynamics did not depend on concentrations of the polymer turning into gel and of the enzyme inducing gelation, whereas, for the anisotropic gelation, the square of the gel thickness was a linear function of the elapsed time, and the slope increased with polymer concentration. The gelation dynamics of the present system was explained by a combination of diffusion-limited gelation followed by free-energy-limited orientation of polymer molecules.

3.
Gels ; 7(1)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525545

ABSTRACT

Plasma is regarded as a solution of precursor polymers specifically transformed to gel-forming polymers by a reaction with initiators. We developed a theory for the gel growth dynamics of plasma induced by contact with a source of gelators that are yielded by the initiation. In developing the theory, we combined the Ginzburg-Landau type dynamics with the gelator diffusion dynamics expressed by the moving boundary picture. The theory predicts the crossover of the rate-limiting process in the time course of the thickness of the gel layer X from the energy-limited process expressed by X∼t to the diffusion-limited process expressed by X∼t, where t is the time elapsed from when the plasma comes into contact with the source of gelators. A demonstration experiment was performed by placing a tissue factor coating plate as the initiator in plasma. Log-log plot of X vs. t showed a crossover as predicted by the theory, and the parameters characterizing plasma were determined.

4.
Carbohydr Polym ; 255: 117329, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33436172

ABSTRACT

The growth rate of the hydrogel of the aqueous konjac glucomannan (KGM) solution containing sodium trimetaphosphate (STMP) dialyzed with aqueous NaOH was investigated in a rectangular cell. The growth rate of the KGM-STMP gel depended on both the KGM and STMP concentrations in addition to the NaOH concentration. The initial growth rate of the KGM-STMP gel was closely related to the diffusion of NaOH into the KGM-STMP solution, leading to the ring-opening reaction of STMP and the deacetylation of KGM at the interface. The time course of the gelation of the KGM-STMP solution was analyzed on the basis of the moving boundary picture theory by introducing the characteristic length to express the consumption of NaOH in the gel layer accompanying the decomposition of STMP. Dynamic mechanical measurements were performed to compare the gelation of the KGM-STMP solution mixed homogeneously with dilute NaOH and the gel dynamics by the dialysis method.

5.
Gels ; 6(3)2020 Sep 12.
Article in English | MEDLINE | ID: mdl-32932741

ABSTRACT

The volume of a cylindrical polyacrylamide gel was measured when immersed in a binary mixture of isobutyric acid-water at different temperatures and weight fractions of isobutyric acid. Near the upper critical solution temperature of the binary mixture, the curve for gel volume vs. isobutyric acid weight fraction has a shoulder or a peak near the critical weight fraction. On the other hand, in a region away from the critical temperature, the gel volume decreased monotonically with increasing isobutyric acid weight fraction. The cloud point temperature of the binary mixture inside the gel was lower than that outside the gel. Thermodynamic description for the gel in the critical mixture is derived on the basis of the Ising model. By the description, the experimental results are explained consistently. The theoretical analysis shows that the shoulder and the peak appearing in the swelling behavior of the gel are respectively induced by the criticalities of the binary mixture outside and inside the gel. It also shows that the cloud point temperature lowering of the binary mixture inside the gel is attributed to the effective enhancement of the temperature of the binary mixture inside the gel induced by the presence of the gel polymer.

6.
Biopolymers ; 110(9): e23315, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31180595

ABSTRACT

ß-1,3-d-glucan with different degrees of branching were obtained by selectively and gradually removing side chains from schizophyllan, a water-soluble triple helical polysaccharide, using the Smith degradation. Size exclusion chromatography combined with a multi-angle light scattering detection was performed in aqueous 0.1 M NaCl. The degree of branching decreased after the Smith degradation, while the molar mass distributions were almost unchanged. The molecular conformation of the Smith-degraded ß-1,3-d-glucan was analyzed on the basis of the molar mass dependency of the radius gyration, and found to be comparable to the original triple helix of schizophyllan. Differential scanning calorimetry in deuterium oxide-hexadeuterodimethylsulfoxide mixtures was performed to investigate the effects of the degree of branching on the cooperative order-disorder transition. Removal of side chains affects both the transition temperature and transition enthalpy. The ordered structure is formed by the residual side chains in the triplex unit, so that the linear cooperative system of the triplex is maintained after the Smith degradation.


Subject(s)
Sizofiran/chemistry , beta-Glucans/chemistry , Calorimetry, Differential Scanning , Carbohydrate Conformation , Chromatography, Gel , Dynamic Light Scattering , Glucan 1,3-beta-Glucosidase/chemistry , Glucan 1,3-beta-Glucosidase/metabolism , Molecular Weight , Proteoglycans , Sodium Chloride , Solutions/chemistry , Thermodynamics , Water/chemistry
7.
J Phys Chem B ; 122(25): 6551-6558, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29860846

ABSTRACT

Carboxylated schizophyllan ("sclerox") is a chemically modified polysaccharide obtained by partial periodate oxidation and subsequent chlorite oxidation of schizophyllan, a water-soluble neutral polysaccharide having a ß-1,3-linked glucan backbone and a ß-1,6-linked d-glucose residue side chain at every third residue of the main chain. The triple helix of schizophyllan in water has a cooperative order-disorder transition associated with the side chains. The transition is strongly affected by the presence (mole fraction) of dimethylsulfoxide (DMSO). In the present study, the solvent effects on the order-disorder transition of sclerox with different degrees of carboxylation (DS) in water-DMSO mixtures were investigated with differential scanning calorimetry and optical rotation. The transition temperature ( Tr) and transition enthalpy (Δ Hr) strongly depended on the mole fraction of DMSO ( xD). Data were further analyzed with the statistical theory for the linear cooperative transition, taking into account the solvent effect, where DMSO molecules are selectively associated with the unmodified side chains. The modified side chain does not contribute to the transition; hence, Δ Hr decreases with increasing DS. The dependence of Tr on the DMSO content becomes weaker than that for unmodified schizophyllan. The theoretical analyses indicated that the number of sites binding with the DMSO molecule and the successive ordered sequence of the ordered unit of the triple helix are changed by carboxylation.

8.
Soft Matter ; 14(14): 2712-2723, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29564465

ABSTRACT

A nonwoven fabric of Konjac glucomannan (KGM) for the adsorption of tannin was fabricated by using electrospinning and then followed by deacetylation with alkaline solution. To analyze the adsorption dynamics of tannin, the time course of the adsorption of tannin on the nonwoven KGM fabric was measured by immersing the fabric in tannin solution at different concentrations of tannin and amounts of the fabric. The initial and late stages of the adsorption behavior could be expressed, respectively, by using a diffusion-limited equation and a stoichiometric equation. A discussion on the dependence of the control parameters on the adsorption behavior is presented. The results represent the first step to provide an effective adsorption procedure for tannin in the use of modified KGM fabric.

9.
Gels ; 4(3)2018 Jul 09.
Article in English | MEDLINE | ID: mdl-30674835

ABSTRACT

We present a scaling model based on a moving boundary picture to describe heterogeneous gelation dynamics. The dynamics of gelation induced by different gelation mechanisms is expressed by the scaled equation for the time taken for development of the gel layer with a few kinetic coefficients characterizing the system. The physical meaning obtained by the analysis for a simple boundary condition from the standpoint of the phase transition shows that the time development of the gelation layer depends on whether the dynamics of the order parameter expressing the gelation of the polymer solution is fast or slow compared with the diffusion of the gelators in the heterogeneous gelation. The analytical method is used to understand the coagulation of blood from various animals. An experiment using systems with plasma coagulation occurring at interfaces with calcium chloride solution and with packed erythrocytes is performed to provide the data for model fitting and it is clarified that a few key kinetic coefficients in plasma coagulation can be estimated from the analysis of gelation dynamics.

10.
Carbohydr Polym ; 168: 79-85, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28457466

ABSTRACT

Schizophyllan and scleroglucan are water-soluble polysaccharides having repeating units consisting of three ß-1,3-linked glucose residues in the main chain and a single ß-1,6-linked glucose residue as the side chain. This polysaccharide dissolves as a triple helix in an aqueous solution and shows a cooperative order-disorder transition between the side chain and solvent molecules while retaining the triple helical conformation. Periodate and subsequent chlorite oxidations selectively modify the side chain glucose to provide the corresponding dicarboxylate units. Optical rotation measurements and differential scanning calorimetry were performed on carboxylated schizophyllan/scleroglucan ('sclerox') samples to investigate the effects of the degree of carboxylation on the order-disorder transition in deuterium oxide with 0.1M NaCl. The transition curves for the sclerox samples are strongly dependent on the degree of carboxylation. The modified side chains cannot take the ordered structure, resulting in a reduction of the transition enthalpy. The transition temperature for carboxylated schizophyllan becomes lowered and the transition curve broadens with increasing the degree of carboxylation. The permanent disordered units are included in a trimer by the carboxylation to inhibit a long sequence of the ordered units.


Subject(s)
Carbohydrate Conformation , Sizofiran/chemistry , Solvents , Thermodynamics , Water
11.
Carbohydr Polym ; 155: 136-145, 2017 Jan 02.
Article in English | MEDLINE | ID: mdl-27702497

ABSTRACT

Curdlan, a microbial polysaccharide, forms a multi-layered gel consisting of four layers with different turbidity when its alkaline solution is dialyzed against aqueous solutions containing Ca2+ (diffusion-set gel). The present study clarified the microstructure of each layer of the diffusion-set Curdlan gel by small-angle X-ray scattering (SAXS) and small-angle light scattering (SALS). The SAXS data showed that Curdlan chains assume a helical ordered conformation in the gel and that the gel consists of the fibrils formed by the association of Curdlan chains and the aggregates of fibrils. The SAXS results also indicated that the gelation is induced by the formation of a network of Ca2+-cross-linked fibrils in the outer region of the gel, whereas by the network formation of the aggregation of fibrils in the neutralization process in the inner region of the gel. A structural anisotropy of the gel was investigated by analysis of two-dimensional SAXS images, showing that the fibril is oriented circumferentially in the outer region of the cylindrical gel, whereas it is oriented randomly in the inner region of the gel. The SALS data showed that a characteristic length of an inhomogeneous structure in the turbid layers is of the order of micrometers. The observed spatial variation of the microscopic structure is caused by the difference in the paths of pH and [Ca2+] traced in the gelation process.

12.
Soft Matter ; 12(47): 9471-9476, 2016 Nov 28.
Article in English | MEDLINE | ID: mdl-27847944

ABSTRACT

Blood coagulation capability is one of the most important factors for the diagnosis of patients with thrombosis. Regarding the blood coagulation as an example of gelation of soft matter, we can apply an analytical method to this phenomenon and pick up some relevant parameters. In various systems, gelation dynamics induced by contact between a polymer solution and a crosslinker solution are well explained by the "moving boundary picture" (Yamamoto et al., J. Phys. Chem. B, 2010, 114, 10002-10009). The aim of this paper is to clarify whether this picture can be applied to a clinically important biological system used for blood coagulation tests. We have measured the time course of the thickness of a plasma gel layer formed when plasma comes in contact with calcium chloride solution in a rectangular cell and analyzed theoretically on the basis of the moving boundary picture. The entire process was well expressed using a scaled equation involving three parameters characterizing the plasma, k, Kin, and ß, where k is the time required to reach the incipient stage of three-dimensional network formation, the parameter Kin is proportional to calcium chloride concentration and ß is a constant. These results indicate the direct applicability of the general theory of gelation dynamics induced by contact between two solutions to the in vitro coagulation (gelation) of plasma, and the fitting parameters may be used for diagnosis.


Subject(s)
Blood Coagulation/drug effects , Calcium Chloride/pharmacology , Plasma/physiology , Humans
13.
Colloids Surf B Biointerfaces ; 140: 189-195, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26764101

ABSTRACT

The effects of hydrostatic pressure on erythrocyte aggregation have been studied by laser photometry and analysis based on a phenomenological theory. Samples were prepared by suspending swine erythrocytes in their own plasma. A high-pressure vessel consisting of a stainless-steel block with a hole to hold a sample cell and two sapphire windows to allows the passage of a He-Ne laser beam was used in the experimental setup. The suspension was stirred at 1500 rpm to disperse the erythrocytes homogeneously. Immediately after reducing the stirring rate from 1500 rpm to 300 rpm, the transmitted light intensity (I) was recorded every 10 ms under a high pressure of 40-200 MPa. The value of I increased with time (t) owing to erythrocyte aggregation. From the phenomenological theory, the equation ΔI(t)=ΔIeq[1-e(-Kt)/(1-B(1-e(-Kt)))] was derived for the change in the transmitted light intensity (ΔI) due to erythrocyte aggregation, where ΔIeq is the transmitted light intensity in the steady state, K is a time constant and B is a constant that represents the ratio of the number of interaction sites on erythrocyte aggregates at time t to that in the steady state. The observed time courses of ΔI obtained at all pressures could be closely fitted to the theoretical equation. ΔIeq roughly increased with increasing pressure. On the other hand, K and B abruptly decreased above 120 MPa. The growth rate of aggregates decreased above 120 MPa. These results suggest a change in the mechanism of erythrocyte aggregation at approximately 120 MPa. We discuss the physical meaning of the parameters.


Subject(s)
Algorithms , Erythrocyte Aggregation/physiology , Erythrocytes/physiology , Lasers , Photometry/methods , Animals , Hydrostatic Pressure , Kinetics , Photometry/instrumentation , Swine , Time Factors
14.
Langmuir ; 31(47): 13022-8, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26540608

ABSTRACT

Dilute suspensions of charged colloidal particles with a short-range attraction and long-range repulsion can exhibit a variety of arrested states. In many applications using suspensions of charged nanoparticles, the optimization of the process requires the understanding of the mechanism underlying the stability and the rheological properties of the suspensions. In an attempt to clarify the solidification mechanism for dilute suspensions of tin dioxide (SnO2) nanoparticles, we present dynamic viscoelasticity, dynamic and static light scattering, and small-angle X-ray scattering experiments on a SnO2 nanoparticle suspension with a nanoparticle concentration of 25.0 wt % (volume fraction φ = 0.045). The behaviors of the observed dynamic and static structure factors reveal that the aging of SnO2 nanoparticles is Wigner glassy rather than gel-like.

15.
Colloids Surf B Biointerfaces ; 121: 122-8, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24967547

ABSTRACT

We have derived theoretical equations describing the adsorption of carcinogen to gels in an immersion medium containing carcinogens. The theory was developed for a cylindrical boundary condition under the assumption of a carcinogen diffusion-limited process combined with the "moving boundary picture (Furusawa et al., 2007)". The time course of the adsorbed carcinogen layer thickness and that of the carcinogen concentration in an immersion medium were expressed by a set of scaled variables, and the asymptotic behavior in the initial stage was derived. Experiments based on the theory were performed using a DNA gel sandwiched between a set of coverglasses in a medium containing acridine orange (AO). The boundary between the AO-adsorbed gel layer and AO-nonadsorbed gel layer was traced during the immersion. The time courses of the AO-adsorbed gel layer thickness and the AO concentration in the immersion medium were well explained by the theory, and the number ratio of the total AO molecules to the adsorption sites in the DNA gel was determined.


Subject(s)
Acridine Orange/chemistry , Carcinogens/chemistry , DNA/chemistry , Gels/chemistry , Adsorption , Animals , Salmon , Solutions , Time Factors
16.
Carbohydr Polym ; 108: 118-26, 2014 Aug 08.
Article in English | MEDLINE | ID: mdl-24751255

ABSTRACT

Molecular orientation in anisotropic gels of chitosan, Curdlan and DNA obtained by dialysis of those aqueous solutions in gelation-inducing solutions was investigated. In this diffusion method (or dialysis method), the gel formation was induced by letting small molecules diffuse in or out of the polymer solutions through the surface. For the gels of DNA and chitosan, the polymer chains aligned perpendicular to the diffusion direction. The same direction of molecular orientation was observed for the Curdlan gel prepared in the dialysis cell. On the other hand, a peculiar nature was observed for the Curdlan gel prepared in the dialysis tube: the molecular orientation was perpendicular to the diffusion direction in the outermost layer of the gel, while the orientation was parallel to the diffusion direction in the inner translucent layer. The orientation parallel to the diffusion direction is attributed to a small deformation of the inner translucent layer caused by a slight shrinkage of the central region after the gel formation. At least near the surface of the gel, the molecular orientation perpendicular to the diffusion direction is a universal characteristic for the gels prepared by the diffusion method.


Subject(s)
Anisotropy , Gels/chemistry , Chitosan/chemistry , DNA/chemistry
17.
Biomacromolecules ; 13(1): 29-39, 2012 Jan 09.
Article in English | MEDLINE | ID: mdl-22107030

ABSTRACT

We have found that dialysis of 5 mg/mL collagen solution into the phosphate solution with a pH of 7.1 and an ionic strength of 151 mM [corrected] at 25 °C results in a collagen gel with a birefringence and tubular pores aligned parallel to the growth direction of the gel. The time course of averaged diameter of tubular pores during the anisotropic gelation was expressed by a power law with an exponent of 1/3, suggesting that the formation of tubular pores is attributed to a spinodal decomposition-like phase separation. Small angle light scattering patterns and high resolution confocal laser scanning microscope images of the anisotropic collagen gel suggested that the collagen fibrils are aligned perpendicular to the growth direction of the gel. The positional dependence of the order parameter of the collagen fibrils showed that the anisotropic collagen gel has an orientation gradient.


Subject(s)
Collagen/chemistry , Anisotropy , Gels , Microscopy, Confocal
18.
Pharmacol Res ; 64(4): 410-9, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21723392

ABSTRACT

In order to minimize the side effect of cancer chemotherapy, a novel galactosamine-mediated drug delivery carrier, galactosamine-conjugated albumin nanoparticles (GAL-AN), was developed for targeted liver cancer therapy. The albumin nanoparticles (AN) and doxorubicin-loaded AN (DOX-AN) were prepared by the desolvation of albumin in the presence of glutaraldehyde crosslinker. Morphological study indicated the spherical structure of these synthesized particles with an average diameter of around 200 nm. The functional ligand of galactosamine (GAL) was introduced onto the surfaces of AN and DOX-AN via carbodiimide chemistry to obtain GAL-AN and GAL-DOX-AN. Cellular uptake and kinetic studies showed that GAL-AN is able to be selectively incorporated into the HepG2 cells rather than AoSMC cells due to the existence of asialoglycoprotein receptors on HepG2 cell surface. The cytotoxicity, measured by MTT test, indicated that AN and GAL-AN are non-toxic and GAL-DOX-AN is more effective in HepG2 cell killing than that of DOX-AN. As such, our results implied that GAL-AN and GAL-DOX-AN have specific interaction with HepG2 cells via the recognition of GAL and asialoglycoprotein receptor, which renders GAL-AN a promising anticancer drug delivery carrier for liver cancer therapy.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Doxorubicin/administration & dosage , Drug Delivery Systems , Galactosamine/chemistry , Liver Neoplasms/drug therapy , Nanoparticles/chemistry , Animals , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/pharmacology , Cattle , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Drug Delivery Systems/methods , Hep G2 Cells , Humans , Nanoparticles/ultrastructure , Serum Albumin, Bovine/chemistry
19.
Biomacromolecules ; 12(6): 2145-52, 2011 Jun 13.
Article in English | MEDLINE | ID: mdl-21504159

ABSTRACT

It was more than 50 years ago that an appearance of birefringence in alginate gels prepared under cation flow was reported for the first time, however, the anisotropic structure of the alginate gel has not been studied in detail. In the present study, anisotropic Ca-alginate gels were prepared within dialysis tubing in a high Ca(2+)-concentration external bath, and optical and small-angle X-ray scattering (SAXS) measurements were performed to characterize the structure of the gel. The observations of the gel with crossed polarizers and with circular polarizers revealed the molecular orientation perpendicular to the direction of Ca(2+) flow. Analyses of the SAXS intensity profiles indicated the formation of rod-like fibrils consisting of a few tens of alginate molecules and that the anisotropy of the gel was caused by the circumferential orientation of the large fibrils. From the observed asymmetric SAXS pattern, it was found that the axis of rotational symmetry of the anisotropic structure was parallel to the direction of Ca(2+) flow. The alignment factor (A(f)) calculated from the SAXS intensity data confirmed that the orientation of the fibrils was perpendicular to the direction of Ca(2+) flow.


Subject(s)
Alginates/chemistry , Biocompatible Materials/chemistry , Calcium/metabolism , Gels/chemistry , Alginates/radiation effects , Anisotropy , Gels/metabolism , Gels/radiation effects , Light , Optical Phenomena , Scattering, Small Angle , Water/chemistry
20.
J Phys Chem B ; 114(31): 10002-9, 2010 Aug 12.
Article in English | MEDLINE | ID: mdl-20684622

ABSTRACT

To control the dynamics of dialysis-induced anisotropic gel formation, we have derived a theoretical expression for the development of the gel layer for a simple case where no cross-link sites for cross-linking agents exists and the inflow and the outflow of low molecular weight components through the dialysis membrane modify the state of polymer molecules to meet the gelation condition. A series of experiments using chitosan solution were done as a model case. The experimental results were compared with asymptotic expressions of the time development equation predicted by theory, and the compatibility of the theoretical picture was examined.


Subject(s)
Chitosan/chemistry , Hydrogels/chemistry , Acetic Acid/chemistry , Anisotropy , Sodium Hydroxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...