Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Appl Radiat Isot ; 202: 111046, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37778141

ABSTRACT

This study compares different approaches for the quantification of the massic activity of 36Cl in graphite samples. All approaches consisted of a combustion step in combination with a trapping solution to collect the volatile elements. Two different resins were used to separate 36Cl from the matrix (CL resin and PS resin). Liquid scintillation counting (LSC), scintillation counting (SC) and tandem inductively coupled plasma mass spectrometry (ICP-MS/MS) were used to quantify 36Cl activity. The chemical yield in all approaches was determined by means of ion chromatography (IC). In addition, the methods were applied to a real activated graphite sample.

2.
Appl Radiat Isot ; 193: 110646, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36603458

ABSTRACT

This work reports a new approach for the determination of 36Cl in radioactive waste samples from nuclear decommissioning, wherein novel plastic scintillator (PS) materials were used for the concentration of 36Cl prior to the detection with scintillation counting. Different plastic scintillator (PS) materials were tested for their selective absorption and detection of 36Cl activity in solid samples. PS microspheres (PSm), cross-linked PSm (CPSm) and PS resin have been investigated. PS resin was identified as the most suitable material for 36Cl analysis. Pyrolysis and subsequent trapping of the volatile elements in a bubbler was used. The trapping solution was finally loaded onto a cartridge of the PS resin. Scintillation counting and ion chromatography were used to determine the activity concentration and the chemical recovery, respectively.

3.
Appl Radiat Isot ; 134: 455-460, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28735687

ABSTRACT

The implementation of the one-pass-through separation technique using two stacked chromatography columns of TEVA - TRU resins for the separation of 237Np, 241Am, thorium, plutonium and uranium from environmental and urine samples was investigated. The sequential separation technique proved to be successful and gave similar results to those obtained when using individual separations. The analysis time was considerably improved. The amount of chemical waste was also reduced by 50% and the use of HClO4 was avoided. The technique of ICP-MS was also investigated as a complementary technique to alpha-spectrometry.


Subject(s)
Americium/analysis , Neptunium/analysis , Plutonium/analysis , Radioactive Pollutants/analysis , Thorium/analysis , Uranium/analysis , Alpha Particles , Americium/isolation & purification , Americium/urine , Chromatography, Liquid/methods , Humans , Mass Spectrometry/methods , Neptunium/isolation & purification , Neptunium/urine , Plutonium/isolation & purification , Plutonium/urine , Radioactive Pollutants/isolation & purification , Radioactive Pollutants/urine , Spectrum Analysis/methods , Thorium/isolation & purification , Thorium/urine , Uranium/isolation & purification , Uranium/urine
SELECTION OF CITATIONS
SEARCH DETAIL