Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 9163, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37280243

ABSTRACT

Pleomorphic xanthoastrocytoma (PXA) is a rare subset of primary pediatric glioma with 70% 5-year disease free survival. However, up to 20% of cases present with local recurrence and malignant transformation into more aggressive type anaplastic PXA (AXPA) or glioblastoma. The understanding of disease etiology and mechanisms driving PXA and APXA are limited, and there is no standard of care. Therefore, development of relevant preclinical models to investigate molecular underpinnings of disease and to guide novel therapeutic approaches are of interest. Here, for the first time we established, and characterized a patient-derived xenograft (PDX) from a leptomeningeal spread of a patient with recurrent APXA bearing a novel CDC42SE2-BRAF fusion. An integrated -omics analysis was conducted to assess model fidelity of the genomic, transcriptomic, and proteomic/phosphoproteomic landscapes. A stable xenoline was derived directly from the patient recurrent tumor and maintained in 2D and 3D culture systems. Conserved histology features between the PDX and matched APXA specimen were maintained through serial passages. Whole exome sequencing (WES) demonstrated a high degree of conservation in the genomic landscape between PDX and matched human tumor, including small variants (Pearson's r = 0.794-0.839) and tumor mutational burden (~ 3 mutations/MB). Large chromosomal variations including chromosomal gains and losses were preserved in PDX. Notably, chromosomal gain in chromosomes 4-9, 17 and 18 and loss in the short arm of chromosome 9 associated with homozygous 9p21.3 deletion involving CDKN2A/B locus were identified in both patient tumor and PDX sample. Moreover, chromosomal rearrangement involving 7q34 fusion; CDC42SE-BRAF t (5;7) (q31.1, q34) (5:130,721,239, 7:140,482,820) was identified in the PDX tumor, xenoline and matched human tumor. Transcriptomic profile of the patient's tumor was retained in PDX (Pearson r = 0.88) and in xenoline (Pearson r = 0.63) as well as preservation of enriched signaling pathways (FDR Adjusted P < 0.05) including MAPK, EGFR and PI3K/AKT pathways. The multi-omics data of (WES, transcriptome, and reverse phase protein array (RPPA) was integrated to deduce potential actionable pathways for treatment (FDR < 0.05) including KEGG01521, KEGG05202, and KEGG05200. Both xenoline and PDX were resistant to the MEK inhibitors trametinib or mirdametinib at clinically relevant doses, recapitulating the patient's resistance to such treatment in the clinic. This set of APXA models will serve as a preclinical resource for developing novel therapeutic regimens for rare anaplastic PXAs and pediatric high-grade gliomas bearing BRAF fusions.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioma , Humans , Child , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Heterografts , Phosphatidylinositol 3-Kinases/genetics , Proteomics , Neoplasm Recurrence, Local/pathology , Astrocytoma/pathology , Glioma/pathology , Mutation , Chromosome Aberrations , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Membrane Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics
2.
Cancers (Basel) ; 15(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36612255

ABSTRACT

Establishment of clinically annotated, molecularly characterized, patient-derived xenografts (PDXs) from treatment-naïve and pretreated patients provides a platform to test precision genomics-guided therapies. An integrated multi-OMICS pipeline was developed to identify cancer-associated pathways and evaluate stability of molecular signatures in a panel of pediatric and AYA PDXs following serial passaging in mice. Original solid tumor samples and their corresponding PDXs were evaluated by whole-genome sequencing, RNA-seq, immunoblotting, pathway enrichment analyses, and the drug−gene interaction database to identify as well as cross-validate actionable targets in patients with sarcomas or Wilms tumors. While some divergence between original tumor and the respective PDX was evident, majority of alterations were not functionally impactful, and oncogenic pathway activation was maintained following serial passaging. CDK4/6 and BETs were prioritized as biomarkers of therapeutic response in osteosarcoma PDXs with pertinent molecular signatures. Inhibition of CDK4/6 or BETs decreased osteosarcoma PDX growth (two-way ANOVA, p < 0.05) confirming mechanistic involvement in growth. Linking patient treatment history with molecular and efficacy data in PDX will provide a strong rationale for targeted therapy and improve our understanding of which therapy is most beneficial in patients at diagnosis and in those already exposed to therapy.

3.
Cancers (Basel) ; 12(9)2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32859084

ABSTRACT

Osteosarcoma (OS) patients exhibit poor overall survival, partly due to copy number variations (CNVs) resulting in dysregulated gene expression and therapeutic resistance. To identify actionable prognostic signatures of poor overall survival, we employed a systems biology approach using public databases to integrate CNVs, gene expression, and survival outcomes in pediatric, adolescent, and young adult OS patients. Chromosome 8 was a hotspot for poor prognostic signatures. The MYC-RAD21 copy number gain (8q24) correlated with increased gene expression and poor overall survival in 90% of the patients (n = 85). MYC and RAD21 play a role in replication-stress, which is a therapeutically actionable network. We prioritized replication-stress regulators, bromodomain and extra-terminal proteins (BETs), and CHK1, in order to test the hypothesis that the inhibition of BET + CHK1 in MYC-RAD21+ pediatric OS models would be efficacious and safe. We demonstrate that MYC-RAD21+ pediatric OS cell lines were sensitive to the inhibition of BET (BETi) and CHK1 (CHK1i) at clinically achievable concentrations. While the potentiation of CHK1i-mediated effects by BETi was BET-BRD4-dependent, MYC expression was BET-BRD4-independent. In MYC-RAD21+ pediatric OS xenografts, BETi + CHK1i significantly decreased tumor growth, increased survival, and was well tolerated. Therefore, targeting replication stress is a promising strategy to pursue as a therapeutic option for this devastating disease.

4.
PLoS One ; 9(12): e113745, 2014.
Article in English | MEDLINE | ID: mdl-25470594

ABSTRACT

CXXC finger protein 1 (Cfp1), encoded by the Cxxc1 gene, binds to DNA sequences containing an unmethylated CpG dinucleotide and is an epigenetic regulator of both cytosine and histone methylation. Cxxc1-null mouse embryos fail to gastrulate, and Cxxc1-null embryonic stem cells are viable but cannot differentiate, suggesting that Cfp1 is required for chromatin remodeling associated with stem cell differentiation and embryogenesis. Mice homozygous for a conditional Cxxc1 deletion allele and carrying the inducible Mx1-Cre transgene were generated to assess Cfp1 function in adult animals. Induction of Cre expression in adult animals led to Cfp1 depletion in hematopoietic cells, a failure of hematopoiesis with a nearly complete loss of lineage-committed progenitors and mature cells, elevated levels of apoptosis, and death within two weeks. A similar pathology resulted following transplantation of conditional Cxxc1 bone marrow cells into wild type recipients, demonstrating this phenotype is intrinsic to Cfp1 function within bone marrow cells. Remarkably, the Lin- Sca-1+ c-Kit+ population of cells in the bone marrow, which is enriched for hematopoietic stem cells and multi-potential progenitor cells, persists and expands in the absence of Cfp1 during this time frame. Thus, Cfp1 is necessary for hematopoietic stem and multi-potential progenitor cell function and for the developmental potential of differentiating hematopoietic cells.


Subject(s)
Epigenesis, Genetic , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Trans-Activators/genetics , Animals , Antigens, Ly/metabolism , Apoptosis/genetics , Bone Marrow Cells/metabolism , Bone Marrow Transplantation/methods , Cell Differentiation/genetics , Cell Lineage/genetics , Cell Proliferation/genetics , Cells, Cultured , Female , Immunoblotting , Male , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Trans-Activators/metabolism
5.
J Biol Chem ; 285(32): 24466-76, 2010 Aug 06.
Article in English | MEDLINE | ID: mdl-20516061

ABSTRACT

Mammalian Wdr82 is a regulatory component of the Setd1a and Setd1b histone H3-lysine 4 methyltransferase complexes and is implicated in the tethering of Setd1 complexes to transcriptional start sites of active genes. In the studies reported here, immunoprecipitation and mass spectrometry analyses reveal that Wdr82 additionally associates with multiple protein complexes, including an RNA polymerase II complex, four distinct histone H3-Lys(4) methyltransferase complexes, protein phosphatase 1 (PP1)-associated proteins, a chaperonin-containing Tcp1 complex, and other uncharacterized proteins. Further characterization of the PP1-associated proteins identified a stable multimeric complex composed of regulatory subunits PNUTS, Tox4, and Wdr82 and a PP1 catalytic subunit (denoted as the PTW/PP1 phosphatase complex). The PTW/PP1 complex exhibits in vitro phosphatase activity in a PP1-dependent manner. Analysis of protein-protein interactions reveals that PNUTS mediates phosphatase complex formation by providing a binding platform to each component. The PNUTS and Tox4 subunits are predominantly associated with the PTW/PP1 phosphatase complex in HEK293 cells, and the integrity of this complex remains intact throughout cell cycle progression. Inducible expression of a PP1 interaction-defective form of PNUTS (W401A) or small interfering RNA-mediated depletion of PNUTS in HEK293 cells causes cell cycle arrest at mitotic exit and apoptotic cell death. PNUTS (W401A) shows normal association with chromosomes but causes defects in the process of chromosome decondensation at late telophase. These data reveal that mammalian Wdr82 functions in a variety of cellular processes and reveal a potential role of the PTW/PP1 phosphatase complex in the regulation of chromatin structure during the transition from mitosis into interphase.


Subject(s)
Protein Phosphatase 1/physiology , Apoptosis , Cell Line , Chromatin/chemistry , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Histones/chemistry , Humans , Mass Spectrometry/methods , Microscopy, Confocal/methods , Mitosis , Neoplasm Proteins/chemistry , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Phosphorylation , Protein Interaction Mapping , Protein Phosphatase 1/chemistry , Protein Structure, Tertiary , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Recombinant Proteins/chemistry
6.
Mol Cell Biol ; 27(11): 4179-97, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17325034

ABSTRACT

Herein, we report the first evidence that c-SRC is required for retinoic acid (RA) receptor (RAR) signaling, an observation that suggests a new paradigm for this family of nuclear hormone receptors. We observed that CSK negatively regulates RAR functions required for neuritogenic differentiation. CSK overexpression inhibited RA-mediated neurite outgrowth, a result which correlated with the inhibition of the SFK c-SRC. Consistent with an extranuclear effect of CSK on RAR signaling and neurite outgrowth, CSK overexpression blocked the downstream activation of RAC1. The conversion of GDP-RAC1 to GTP-RAC1 parallels the activation of c-SRC as early as 15 min following all-trans-retinoic acid treatment in LA-N-5 cells. The cytoplasmic colocalization of c-SRC and RARgamma was confirmed by immunofluorescence staining and confocal microscopy. A direct and ligand-dependent binding of RAR with SRC was observed by surface plasmon resonance, and coimmunoprecipitation studies confirmed the in vivo binding of RARgamma to c-SRC. Deletion of a proline-rich domain within RARgamma abrogated this interaction in vivo. CSK blocked the RAR-RA-dependent activation of SRC and neurite outgrowth in LA-N-5 cells. The results suggest that transcriptional signaling events mediated by RA-RAR are necessary but not sufficient to mediate complex differentiation in neuronal cells. We have elucidated a nongenomic extranuclear signal mediated by the RAR-SRC interaction that is negatively regulated by CSK and is required for RA-induced neuronal differentiation.


Subject(s)
Cell Differentiation/physiology , Genes, src , Neurites/physiology , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins pp60(c-src)/metabolism , Receptors, Retinoic Acid/metabolism , Signal Transduction/physiology , Animals , Antineoplastic Agents/metabolism , Cell Line , Enzyme Inhibitors/metabolism , Humans , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins pp60(c-src)/genetics , Pyrazoles/metabolism , Pyrimidines/metabolism , Receptors, Retinoic Acid/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Retinoic Acid Receptor alpha , Tretinoin/metabolism , rac1 GTP-Binding Protein/metabolism
7.
Mol Cell Biol ; 25(12): 4881-91, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15923607

ABSTRACT

Cytosine methylation at CpG dinucleotides is a critical epigenetic modification of mammalian genomes. CpG binding protein (CGBP) exhibits a unique DNA-binding specificity for unmethylated CpG motifs and is essential for early murine development. Embryonic stem cell lines deficient for CGBP were generated to further examine CGBP function. CGBP(-)(/)(-) cells are viable but show an increased rate of apoptosis and are unable to achieve in vitro differentiation following removal of leukemia inhibitory factor from the growth media. Instead, CGBP(-)(/)(-) embryonic stem cells remain undifferentiated as revealed by persistent expression of the pluripotent markers Oct4 and alkaline phosphatase. CGBP(-)(/)(-) cells exhibit a 60 to 80% decrease in global cytosine methylation, including hypo-methylation of repetitive elements, single-copy genes, and imprinted genes. Total DNA methyltransferase activity is reduced by 30 to 60% in CGBP(-)(/)(-) cells, and expression of the maintenance DNA methyltransferase 1 protein is similarly reduced. However, de novo DNA methyltransferase activity is normal. Nearly all aspects of the pleiotropic CGBP(-)(/)(-) phenotype are rescued by introduction of a CGBP expression vector. Hence, CGBP is essential for normal epigenetic modification of the genome by cytosine methylation and for cellular differentiation, consistent with the requirement for CGBP during early mammalian development.


Subject(s)
Cell Differentiation/physiology , CpG Islands , Cytosine/metabolism , DNA Methylation , DNA-Binding Proteins/metabolism , Stem Cells/physiology , Trans-Activators/metabolism , Animals , Apoptosis , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA-Binding Proteins/genetics , Epigenesis, Genetic , Female , Fetal Viability , Humans , Male , Mice , Mice, Knockout , Phenotype , Pregnancy , Trans-Activators/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...