Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cardiovasc Dev Dis ; 5(2)2018 04 19.
Article in English | MEDLINE | ID: mdl-29671769

ABSTRACT

Cyclic GMP regulates multiple cell types and functions of the cardiovascular system. This review summarizes the effects of cGMP on the growth and survival of vascular smooth muscle cells (VSMCs), which display remarkable phenotypic plasticity during the development of vascular diseases, such as atherosclerosis. Recent studies have shown that VSMCs contribute to the development of atherosclerotic plaques by clonal expansion and transdifferentiation to macrophage-like cells. VSMCs express a variety of cGMP generators and effectors, including NO-sensitive guanylyl cyclase (NO-GC) and cGMP-dependent protein kinase type I (cGKI), respectively. According to the traditional view, cGMP inhibits VSMC proliferation, but this concept has been challenged by recent findings supporting a stimulatory effect of the NO-cGMP-cGKI axis on VSMC growth. Here, we summarize the relevant studies with a focus on VSMC growth regulation by the NO-cGMP-cGKI pathway in cultured VSMCs and mouse models of atherosclerosis, restenosis, and angiogenesis. We discuss potential reasons for inconsistent results, such as the use of genetic versus pharmacological approaches and primary versus subcultured cells. We also explore how modern methods for cGMP imaging and cell tracking could help to improve our understanding of cGMP's role in vascular plasticity. We present a revised model proposing that cGMP promotes phenotypic switching of contractile VSMCs to VSMC-derived plaque cells in atherosclerotic lesions. Regulation of vascular remodeling by cGMP is not only an interesting new therapeutic strategy, but could also result in side effects of clinically used cGMP-elevating drugs.

2.
Cell Rep ; 14(11): 2599-610, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-26971999

ABSTRACT

Sildenafil, an inhibitor of the cGMP-degrading phosphodiesterase 5 that is used to treat erectile dysfunction, has been linked to an increased risk of melanoma. Here, we have examined the potential connection between cGMP-dependent signaling cascades and melanoma growth. Using a combination of biochemical assays and real-time monitoring of melanoma cells, we report a cGMP-dependent growth-promoting pathway in murine and human melanoma cells. We document that C-type natriuretic peptide (CNP), a ligand of the membrane-bound guanylate cyclase B, enhances the activity of cGMP-dependent protein kinase I (cGKI) in melanoma cells by increasing the intracellular levels of cGMP. Activation of this cGMP pathway promotes melanoma cell growth and migration in a p44/42 MAPK-dependent manner. Sildenafil treatment further increases intracellular cGMP concentrations, potentiating activation of this pathway. Collectively, our data identify this cGMP-cGKI pathway as the link between sildenafil usage and increased melanoma risk.


Subject(s)
Cyclic GMP/metabolism , Signal Transduction/drug effects , Sildenafil Citrate/pharmacology , Animals , Butadienes/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cyclic GMP-Dependent Protein Kinase Type I/chemistry , Cyclic GMP-Dependent Protein Kinase Type I/genetics , Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 5/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Female , Humans , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/metabolism , Natriuretic Peptide, C-Type/toxicity , Nitriles/pharmacology , Phosphodiesterase 5 Inhibitors/pharmacology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Sildenafil Citrate/therapeutic use , Transplantation, Homologous
3.
mBio ; 6(3): e02559-14, 2015 May 26.
Article in English | MEDLINE | ID: mdl-26015502

ABSTRACT

UNLABELLED: Conjugative DNA transfer in mycelial Streptomyces is a unique process involving the transfer of a double-stranded plasmid from the donor into the recipient and the subsequent spreading of the transferred plasmid within the recipient mycelium. This process is associated with growth retardation of the recipient and manifested by the formation of circular inhibition zones, named pocks. To characterize the unique Streptomyces DNA transfer machinery, we replaced each gene of the conjugative 12.1-kbp Streptomyces venezuelae plasmid pSVH1, with the exception of the rep gene required for plasmid replication, with a hexanucleotide sequence. Only deletion of traB, encoding the FtsK-like DNA translocase, affected efficiency of the transfer dramatically and abolished pock formation. Deletion of spdB3, spd79, or spdB2 had a minor effect on transfer but prevented pock formation and intramycelial plasmid spreading. Biochemical characterization of the encoded proteins revealed that the GntR-type regulator TraR recognizes a specific sequence upstream of spdB3, while Orf108, SpdB2, and TraR bind to peptidoglycan. SpdB2 promoted spheroplast formation by T7 lysozyme and formed pores in artificial membranes. Bacterial two-hybrid analyses and chemical cross-linking revealed that most of the pSVH1-encoded proteins interacted with each other, suggesting a multiprotein DNA translocation complex of TraB and Spd proteins which directs intramycelial plasmid spreading. IMPORTANCE: Mycelial soil bacteria of the genus Streptomyces evolved specific resistance genes as part of the biosynthetic gene clusters to protect themselves from their own antibiotic, making streptomycetes a huge natural reservoir of antibiotic resistance genes for dissemination by horizontal gene transfer. Streptomyces conjugation is a unique process, visible on agar plates with the mere eye by the formation of circular inhibition zones, called pocks. To understand the Streptomyces conjugative DNA transfer machinery, which does not involve a type IV secretion system (T4SS), we made a thorough investigation of almost all genes/proteins of the model plasmid pSVH1. We identified all genes involved in transfer and intramycelial plasmid spreading and showed that the FtsK-like DNA translocase TraB interacts with multiple plasmid-encoded proteins. Our results suggest the existence of a macromolecular DNA translocation complex that directs intramycelial plasmid spreading.


Subject(s)
Conjugation, Genetic , DNA, Bacterial/metabolism , Multiprotein Complexes/metabolism , Plasmids/metabolism , Streptomyces/metabolism , Biological Transport , Gene Deletion , Protein Binding , Protein Interaction Mapping , Protein Multimerization , Streptomyces/genetics , Two-Hybrid System Techniques
4.
Appl Microbiol Biotechnol ; 93(3): 1315-24, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21755281

ABSTRACT

In silico analysis of nucleotide sequences flanking the recently found hydroquinone dioxygenase in Sphingomonas sp. strain TTNP3 revealed a gene cluster that encodes a hydroquinone catabolic pathway. In addition to the two open-reading frames encoding the recently characterized hydroquinone dioxygenase, the cluster consisted of six open-reading frames. We were able to express the three open-reading frames, hqdC, hqdD, and hqdE, and demonstrated that the three gene products, HqdC, HqdD, and HqdE had 4-hydroxymuconic semialdehyde dehydrogenase, maleylacetate reductase, and intradiol dioxygenase activity, respectively. Surprisingly, the gene cluster showed similarities to functionally related clusters found in members of the ß- and γ-proteobacteria rather than to those found in other members of the genus Sphingomonas sensu latu.


Subject(s)
Hydroquinones/metabolism , Multigene Family/genetics , Sphingomonas/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental , Biotechnology , Dioxygenases/genetics , Dioxygenases/metabolism , Fatty Acids, Unsaturated/metabolism , Genes, Bacterial , Molecular Sequence Data , Oxidoreductases/genetics , Oxidoreductases/metabolism , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Phenols/metabolism , Sequence Analysis, DNA , Sphingomonas/genetics , Sphingomonas/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL