Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 5333, 2022 09 10.
Article in English | MEDLINE | ID: mdl-36088370

ABSTRACT

Neoantigens derived from somatic mutations are specific to cancer cells and are ideal targets for cancer immunotherapy. KRAS is the most frequently mutated oncogene and drives the pathogenesis of several cancers. Here we show the identification and development of an affinity-enhanced T cell receptor (TCR) that recognizes a peptide derived from the most common KRAS mutant, KRASG12D, presented in the context of HLA-A*11:01. The affinity of the engineered TCR is increased by over one million-fold yet fully able to distinguish KRASG12D over KRASWT. While crystal structures reveal few discernible differences in TCR interactions with KRASWT versus KRASG12D, thermodynamic analysis and molecular dynamics simulations reveal that TCR specificity is driven by differences in indirect electrostatic interactions. The affinity enhanced TCR, fused to a humanized anti-CD3 scFv, enables selective killing of cancer cells expressing KRASG12D. Our work thus reveals a molecular mechanism that drives TCR selectivity and describes a soluble bispecific molecule with therapeutic potential against cancers harboring a common shared neoantigen.


Subject(s)
Lung Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Lung Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Receptors, Antigen, T-Cell/genetics
2.
Blood Adv ; 5(13): 2687-2700, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34170285

ABSTRACT

The differentiation of hematopoietic stem cells (HSCs) is tightly controlled to ensure a proper balance between myeloid and lymphoid cell output. GATA2 is a pivotal hematopoietic transcription factor required for generation and maintenance of HSCs. GATA2 is expressed throughout development, but because of early embryonic lethality in mice, its role during adult hematopoiesis is incompletely understood. Zebrafish contains 2 orthologs of GATA2: Gata2a and Gata2b, which are expressed in different cell types. We show that the mammalian functions of GATA2 are split between these orthologs. Gata2b-deficient zebrafish have a reduction in embryonic definitive hematopoietic stem and progenitor cell (HSPC) numbers, but are viable. This allows us to uniquely study the role of GATA2 in adult hematopoiesis. gata2b mutants have impaired myeloid lineage differentiation. Interestingly, this defect arises not in granulocyte-monocyte progenitors, but in HSPCs. Gata2b-deficient HSPCs showed impaired progression of the myeloid transcriptional program, concomitant with increased coexpression of lymphoid genes. This resulted in a decrease in myeloid-programmed progenitors and a relative increase in lymphoid-programmed progenitors. This shift in the lineage output could function as an escape mechanism to avoid a block in lineage differentiation. Our study helps to deconstruct the functions of GATA2 during hematopoiesis and shows that lineage differentiation flows toward a lymphoid lineage in the absence of Gata2b.


Subject(s)
Hematopoietic Stem Cells , Zebrafish , Animals , Cell Differentiation , GATA2 Transcription Factor/genetics , Hematopoiesis , Mice , Monocytes , Zebrafish Proteins
3.
Commun Biol ; 3(1): 71, 2020 02 13.
Article in English | MEDLINE | ID: mdl-32054973

ABSTRACT

Gata2 is a key transcription factor required to generate Haematopoietic Stem and Progenitor Cells (HSPCs) from haemogenic endothelium (HE); misexpression of Gata2 leads to haematopoietic disorders. Here we deleted a conserved enhancer (i4 enhancer) driving pan-endothelial expression of the zebrafish gata2a and showed that Gata2a is required for HE programming by regulating expression of runx1 and of the second Gata2 orthologue, gata2b. By 5 days, homozygous gata2aΔi4/Δi4 larvae showed normal numbers of HSPCs, a recovery mediated by Notch signalling driving gata2b and runx1 expression in HE. However, gata2aΔi4/Δi4 adults showed oedema, susceptibility to infections and marrow hypo-cellularity, consistent with bone marrow failure found in GATA2 deficiency syndromes. Thus, gata2a expression driven by the i4 enhancer is required for correct HE programming in embryos and maintenance of steady-state haematopoietic stem cell output in the adult. These enhancer mutants will be useful in exploring further the pathophysiology of GATA2-related deficiencies in vivo.


Subject(s)
Cellular Reprogramming/genetics , Conserved Sequence , Endothelium/metabolism , Enhancer Elements, Genetic , GATA2 Transcription Factor/genetics , Hematopoiesis/genetics , Sequence Deletion , Age Factors , Animals , Base Sequence , Chromatin/genetics , Gene Expression Regulation, Developmental , Genes, Reporter , Genetic Loci , Hematopoietic Stem Cells/metabolism , Zebrafish
4.
J Vis Exp ; (155)2020 01 28.
Article in English | MEDLINE | ID: mdl-32065138

ABSTRACT

In situ hybridization (ISH) is an important technique that enables researchers to study mRNA distribution in situ and has been a critical technique in developmental biology for decades. Traditionally, most gene expression studies relied on visual evaluation of the ISH signal, a method that is prone to bias, particularly in cases where sample identities are known a priori. We have previously reported on a method to circumvent this bias and provide a more accurate quantification of ISH signals. Here, we present a simple guide to apply this method to quantify the expression levels of genes of interest in ISH-stained embryos and correlate that with their corresponding genotypes. The method is particularly useful to quantify spatially restricted gene expression signals in samples of mixed genotypes and it provides an unbiased and accurate alternative to the traditional visual scoring methods.


Subject(s)
In Situ Hybridization/methods , Animals , Genotype , Zebrafish
5.
IUBMB Life ; 72(1): 39-44, 2020 01.
Article in English | MEDLINE | ID: mdl-31778014

ABSTRACT

GATA factors play central roles in the programming of blood and cardiac cells during embryonic development. Using the experimentally accessible Xenopus and zebrafish models, we report observations regarding the roles of GATA-2 in the development of blood stem cells and GATA-4, -5, and -6 in cardiac development. We show that blood stem cells develop from the dorsal lateral plate mesoderm and GATA-2 is required at multiple stages. Firstly, GATA-2 is required to make the cells responsive to VEGF-A signalling by driving the synthesis of its receptor, FLK-1/KDR. This leads to differentiation into the endothelial cells that form the dorsal aorta. GATA-2 is again required for the endothelial-to-haematopoietic transition that takes place later in the floor of the dorsal aorta. GATA-2 expression is dependent on BMP signalling for each of these inputs into blood stem cell programming. GATA-4, -5, and -6 work together to ensure the specification of cardiac cells during development. We have demonstrated redundancy within the family and also some evolution of the functions of the different family members. Interestingly, one of the features that varies in evolution is the timing of expression relative to other key regulators such as Nkx2.5 and BMP. We show that the GATA factors, Nkx2.5 and BMP regulate each other and it would appear that what is critical is the mutually supportive network of expression rather than the order of expression of each of the component genes. In Xenopus and zebrafish, the cardiac mesoderm is adjacent to an anterior population of cells giving rise to blood and endothelium. This population is not present in mammals and we have shown that, like the cardiac population, the blood and endothelial precursors require GATA-4, -5, and -6 for their development. Later, blood-specific or cardiac-specific regulators determine the ultimate fate of the cells, and we show that these regulators act cross-antagonistically. Fibroblast growth factor (FGF) signalling drives the cardiac fate, and we propose that the anterior extension of the FGF signalling field during evolution led to the recruitment of the blood and endothelial precursors into the heart field ultimately resulting in a larger four chambered heart. Zebrafish are able to successfully regenerate their hearts after injury. To understand the pathways involved, with a view to determining why humans cannot do this, we profiled gene expression in the cardiomyocytes before and after injury, and compared those proximal to the injury with those more distal. We were able to identify an enhancement of the expression of regulators of the canonical Wnt pathway proximal to the injury, suggesting that changes in Wnt signalling are responsible for the repair response to injury.


Subject(s)
Blood/metabolism , Cell Differentiation , GATA Transcription Factors/metabolism , Gene Expression Regulation, Developmental , Myocytes, Cardiac/cytology , Animals , GATA Transcription Factors/genetics , Humans , Myocytes, Cardiac/metabolism
6.
Biol Open ; 7(4)2018 Apr 09.
Article in English | MEDLINE | ID: mdl-29535102

ABSTRACT

Advances in genome engineering have resulted in the generation of numerous zebrafish mutant lines. A commonly used method to assess gene expression in the mutants is in situ hybridisation (ISH). Because the embryos can be distinguished by genotype after ISH, comparing gene expression between wild-type and mutant siblings can be done blinded and in parallel. Such experimental design reduces the technical variation between samples and minimises the risk of bias. This approach, however, requires an efficient method of genomic DNA extraction from post-ISH fixed zebrafish samples to ascribe phenotype to genotype. Here we describe a method to obtain PCR-quality DNA from 95-100% of zebrafish embryos, suitable for genotyping after ISH. In addition, we provide an image analysis protocol for quantifying gene expression of ISH-probed embryos, adaptable for the analysis of different expression patterns. Finally, we show that intensity-based image analysis enables accurate representation of the variability of gene expression detected by ISH and that it can complement quantitative methods like qRT-PCR. By combining genotyping after ISH and computer-based image analysis, we have established a high-confidence, unbiased methodology to assign gene expression levels to specific genotypes, and applied it to the analysis of molecular phenotypes of newly generated lmo4a mutants.

7.
J Biol Chem ; 289(49): 34341-8, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25271152

ABSTRACT

Class IIa histone deacetylases (HDACs) regulate the activity of many transcription factors to influence liver gluconeogenesis and the development of specialized cells, including muscle, neurons, and lymphocytes. Here, we describe a conserved role for class IIa HDACs in sustaining robust circadian behavioral rhythms in Drosophila and cellular rhythms in mammalian cells. In mouse fibroblasts, overexpression of HDAC5 severely disrupts transcriptional rhythms of core clock genes. HDAC5 overexpression decreases BMAL1 acetylation on Lys-537 and pharmacological inhibition of class IIa HDACs increases BMAL1 acetylation. Furthermore, we observe cyclical nucleocytoplasmic shuttling of HDAC5 in mouse fibroblasts that is characteristically circadian. Mutation of the Drosophila homolog HDAC4 impairs locomotor activity rhythms of flies and decreases period mRNA levels. RNAi-mediated knockdown of HDAC4 in Drosophila clock cells also dampens circadian function. Given that the localization of class IIa HDACs is signal-regulated and influenced by Ca(2+) and cAMP signals, our findings offer a mechanism by which extracellular stimuli that generate these signals can feed into the molecular clock machinery.


Subject(s)
ARNTL Transcription Factors/genetics , Circadian Clocks/genetics , Drosophila Proteins/genetics , Gene Expression Regulation , Histone Deacetylases/genetics , RNA, Messenger/genetics , ARNTL Transcription Factors/metabolism , Acetylation , Animals , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Calcium/metabolism , Conserved Sequence , Cyclic AMP , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Genes, Reporter , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Luciferases/genetics , Luciferases/metabolism , Mice , NIH 3T3 Cells , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...