Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Sci Rep ; 14(1): 14041, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38890395

ABSTRACT

The sinus node (SN) serves as the primary pacemaker of the heart and is the first component of the cardiac conduction system. Due to its anatomical properties and sample scarcity, the cellular composition of the human SN has been historically challenging to study. Here, we employed a novel deep learning deconvolution method, namely Bulk2space, to characterise the cellular heterogeneity of the human SN using existing single-cell datasets of non-human species. As a proof of principle, we used Bulk2Space to profile the cells of the bulk human right atrium using publicly available mouse scRNA-Seq data as a reference. 18 human cell populations were identified, with cardiac myocytes being the most abundant. Each identified cell population correlated to its published experimental counterpart. Subsequently, we applied the deconvolution to the bulk transcriptome of the human SN and identified 11 cell populations, including a population of pacemaker cardiomyocytes expressing pacemaking ion channels (HCN1, HCN4, CACNA1D) and transcription factors (SHOX2 and TBX3). The connective tissue of the SN was characterised by adipocyte and fibroblast populations, as well as key immune cells. Our work unravelled the unique single cell composition of the human SN by leveraging the power of a novel machine learning method.


Subject(s)
Myocytes, Cardiac , Single-Cell Analysis , Sinoatrial Node , Humans , Sinoatrial Node/cytology , Sinoatrial Node/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , Single-Cell Analysis/methods , Mice , Animals , Artificial Intelligence , Transcriptome , Heart Atria/metabolism , Heart Atria/cytology , Deep Learning
2.
Int J Mol Sci ; 24(22)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-38003397

ABSTRACT

MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that play a role in post-transcriptional gene regulation. It is generally accepted that their main mechanism of action is the negative regulation of gene expression, through binding to specific regions in messenger RNA (mRNA) and repressing protein translation. By interrupting protein synthesis, miRNAs can effectively turn genes off and influence many basic processes in the body, such as developmental and apoptotic behaviours of cells and cardiac organogenesis. Their importance is highlighted by inhibiting or overexpressing certain miRNAs, which will be discussed in the context of coronary artery disease, atrial fibrillation, bradycardia, and heart failure. Dysregulated levels of miRNAs in the body can exacerbate or alleviate existing disease, and their omnipresence in the body makes them reliable as quantifiable markers of disease. This review aims to provide a summary of miRNAs as biomarkers and their interactions with targets that affect cardiac health, and intersperse it with current therapeutic knowledge. It intends to succinctly inform on these topics and guide readers toward more comprehensive works if they wish to explore further through a wide-ranging citation list.


Subject(s)
Atrial Fibrillation , Heart Failure , MicroRNAs , Humans , MicroRNAs/metabolism , Heart , Gene Expression Regulation , Atrial Fibrillation/metabolism
3.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220178, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37122221

ABSTRACT

Patients with pulmonary arterial hypertension (PAH) have a high burden of arrhythmias, including arrhythmias arising from sinus node dysfunction, and the aim of this study was to investigate the effects of PAH on the sinus node. In the rat, PAH was induced by an injection of monocrotaline. Three weeks after injection, there was a decrease of the intrinsic heart rate (heart rate in the absence of autonomic tone) as well as the normal heart rate, evidence of sinus node dysfunction. In the sinus node of PAH rats, there was a significant downregulation of many ion channels and Ca2+-handling genes that could explain the dysfunction: HCN1 and HCN4 (responsible for pacemaker current, If), Cav1.2, Cav1.3 and Cav3.1 (responsible for L- and T-type Ca2+ currents, ICa,L and ICa,T), NCX1 (responsible for Na+-Ca2+ exchanger) and SERCA2 and RYR2 (Ca2+-handling molecules). In the sinus node of PAH rats, there was also a significant upregulation of many fibrosis genes that could also help explain the dysfunction: vimentin, collagen type 1, elastin, fibronectin and transforming growth factor ß1. In summary, in PAH, there is a remodelling of ion channel, Ca2+-handling and fibrosis genes in the sinus node that is likely to be responsible for the sinus node dysfunction. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Subject(s)
Pulmonary Arterial Hypertension , Sinoatrial Node , Rats , Animals , Sinoatrial Node/metabolism , Pulmonary Arterial Hypertension/metabolism , Sick Sinus Syndrome/metabolism , Ion Channels/genetics , Ion Channels/metabolism , Fibrosis
4.
Front Pharmacol ; 14: 1083910, 2023.
Article in English | MEDLINE | ID: mdl-37081960

ABSTRACT

Heart failure is associated with atrioventricular (AV) node dysfunction, and AV node dysfunction in the setting of heart failure is associated with an increased risk of mortality and heart failure hospitalisation. This study aims to understand the causes of AV node dysfunction in heart failure by studying changes in the whole nodal transcriptome. The mouse transverse aortic constriction model of pressure overload-induced heart failure was studied; functional changes were assessed using electrocardiography and echocardiography and the transcriptome of the AV node was quantified using RNAseq. Heart failure was associated with a significant increase in the PR interval, indicating a slowing of AV node conduction and AV node dysfunction, and significant changes in 3,077 transcripts (5.6% of the transcriptome). Many systems were affected: transcripts supporting AV node conduction were downregulated and there were changes in transcripts identified by GWAS as determinants of the PR interval. In addition, there was evidence of remodelling of the sarcomere, a shift from fatty acid to glucose metabolism, remodelling of the extracellular matrix, and remodelling of the transcription and translation machinery. There was evidence of the causes of this widespread remodelling of the AV node: evidence of dysregulation of multiple intracellular signalling pathways, dysregulation of 109 protein kinases and 148 transcription factors, and an immune response with a proliferation of neutrophils, monocytes, macrophages and B lymphocytes and a dysregulation of 40 cytokines. In conclusion, inflammation and a widespread transcriptional remodelling of the AV node underlies AV node dysfunction in heart failure.

7.
Sci Rep ; 11(1): 19328, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34588502

ABSTRACT

Heart failure (HF) is frequently accompanied with the sinoatrial node (SAN) dysfunction, which causes tachy-brady arrhythmias and increased mortality. MicroRNA (miR) alterations are associated with HF progression. However, the transcriptome of HF human SAN, and its role in HF-associated remodeling of ion channels, transporters, and receptors responsible for SAN automaticity and conduction impairments is unknown. We conducted comprehensive high-throughput transcriptomic analysis of pure human SAN primary pacemaker tissue and neighboring right atrial tissue from human transplanted HF hearts (n = 10) and non-failing (nHF) donor hearts (n = 9), using next-generation sequencing. Overall, 47 miRs and 832 mRNAs related to multiple signaling pathways, including cardiac diseases, tachy-brady arrhythmias and fibrosis, were significantly altered in HF SAN. Of the altered miRs, 27 are predicted to regulate mRNAs of major ion channels and neurotransmitter receptors which are involved in SAN automaticity (e.g. HCN1, HCN4, SLC8A1) and intranodal conduction (e.g. SCN5A, SCN8A) or both (e.g. KCNJ3, KCNJ5). Luciferase reporter assays were used to validate interactions of miRs with predicted mRNA targets. In conclusion, our study provides a profile of altered miRs in HF human SAN, and a novel transcriptome blueprint to identify molecular targets for SAN dysfunction and arrhythmia treatments in HF.


Subject(s)
Arrhythmias, Cardiac/complications , Heart Failure/genetics , MicroRNAs/metabolism , RNA, Messenger/metabolism , Sinoatrial Node/physiopathology , Adult , Aged , Arrhythmias, Cardiac/genetics , Female , Gene Expression Profiling , High-Throughput Screening Assays , Humans , Male , MicroRNAs/analysis , Middle Aged , RNA, Messenger/analysis , Transcriptome , Young Adult
8.
Eur J Pharmacol ; 908: 174369, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34310913

ABSTRACT

Mir-133a-3p is the most abundant myocardial microRNA. The impact of mir-133a-3p on cardiac electrophysiology is poorly explored. In this study, we investigated the effects of mir-133a-3p on the main ionic currents critical for action potential (AP) generation and electrical activity of the heart. We used conventional ECG, sharp microelectrodes and patch-clamp to clarify a role of mir-133a-3p in normal cardiac electrophysiology in rats after in vivo and in vitro transfection. Mir-133a-3p caused no changes to pacemaker APs and automaticity in the sinoatrial node. No significant changes in heart rate (HR) were observed in vivo; however, miR transfection facilitated HR increase in response to ß-adrenergic stimulation. Mir-133a-3p induced repolarization abnormalities in the atrial working myocardium and the L-type calcium current (ICa,L) was significantly increased. The main repolarization currents, including the transient outward (Ito), ultra-rapid (IK,ur), and inward rectifier (IK1) remained unaffected in atrial cardiomyocytes. Mir-133a-3p affected both ICa,L and Ito in ventricular cardiomyocytes. Systemic administration of mir-133a-3p induced QT-interval prolongation. Bioinformatic analysis revealed protein phosphatase 2 (PPP2CA/B) and Kcnd3 (encoding Kv4.3 channels generating Ito) as the main miR-133a-3p targets in the heart. No changes in mRNA expression of Cacna1c (encoding Cav1.2 channels generating ICa,L) and Kcnd3 were seen in mir-133a-3p treated rats. However, the expression of Ppp2cA, encoding PPP2CA, and Kcnip2 encoding KChIP2, a Kv4.3 regulatory protein, were significantly decreased. The accumulation of mir-133a-3p in cardiac myocytes causes chamber-specific electrophysiological changes. The suppression of PPP2CA, involved in adrenergic signal transduction, and Kchip2 may indirectly mediate mir-133a-3p-induced augmentation of ICa,L and attenuation of Ito.


Subject(s)
Myocardium , Animals , Heart Ventricles , Rats
9.
Circ Heart Fail ; 14(7): e007505, 2021 07.
Article in English | MEDLINE | ID: mdl-34190577

ABSTRACT

BACKGROUND: Purkinje fibers (PFs) control timing of ventricular conduction and play a key role in arrhythmogenesis in heart failure (HF) patients. We investigated the effects of HF on PFs. METHODS: Echocardiography, electrocardiography, micro-computed tomography, quantitative polymerase chain reaction, immunohistochemistry, volume electron microscopy, and sharp microelectrode electrophysiology were used. RESULTS: Congestive HF was induced in rabbits by left ventricular volume- and pressure-overload producing left ventricular hypertrophy, diminished fractional shortening and ejection fraction, and increased left ventricular dimensions. HF baseline QRS and corrected QT interval were prolonged by 17% and 21% (mean±SEMs: 303±6 ms HF, 249±11 ms control; n=8/7; P=0.0002), suggesting PF dysfunction and impaired ventricular repolarization. Micro-computed tomography imaging showed increased free-running left PF network volume and length in HF. mRNA levels for 40 ion channels, Ca2+-handling proteins, connexins, and proinflammatory and fibrosis markers were assessed: 50% and 35% were dysregulated in left and right PFs respectively, whereas only 12.5% and 7.5% changed in left and right ventricular muscle. Funny channels, Ca2+-channels, and K+-channels were significantly reduced in left PFs. Microelectrode recordings from left PFs revealed more negative resting membrane potential, reduced action potential upstroke velocity, prolonged duration (action potential duration at 90% repolarization: 378±24 ms HF, 249±5 ms control; n=23/38; P<0.0001), and arrhythmic events in HF. Similar electrical remodeling was seen at the left PF-ventricular junction. In the failing left ventricle, upstroke velocity and amplitude were increased, but action potential duration at 90% repolarization was unaffected. CONCLUSIONS: Severe volume- followed by pressure-overload causes rapidly progressing HF with extensive remodeling of PFs. The PF network is central to both arrhythmogenesis and contractile dysfunction and the pathological remodeling may increase the risk of fatal arrhythmias in HF patients.


Subject(s)
Action Potentials/physiology , Heart Failure/physiopathology , Heart Ventricles/physiopathology , Ventricular Remodeling/physiology , Animals , Cardiac Pacing, Artificial/adverse effects , Electrocardiography/methods , Heart Rate/physiology , Male , Models, Animal , Rabbits , X-Ray Microtomography/adverse effects
10.
Prog Biophys Mol Biol ; 166: 86-104, 2021 11.
Article in English | MEDLINE | ID: mdl-34004232

ABSTRACT

RESEARCH PURPOSE: The sinus node (SN) is the heart's primary pacemaker. Key ion channels (mainly the funny channel, HCN4) and Ca2+-handling proteins in the SN are responsible for its function. Transcription factors (TFs) regulate gene expression through inhibition or activation and microRNAs (miRs) do this through inhibition. There is high expression of macrophages and mast cells within the SN connective tissue. 'Novel'/unexplored TFs and miRs in the regulation of ion channels and immune cells in the SN are not well understood. Using RNAseq and bioinformatics, the expression profile and predicted interaction of key TFs and cell markers with key miRs in the adult human SN vs. right atrial tissue (RA) were determined. PRINCIPAL RESULTS: 68 and 60 TFs significantly more or less expressed in the SN vs. RA respectively. Among those more expressed were ISL1 and TBX3 (involved in embryonic development of the SN) and 'novel' RUNX1-2, CEBPA, GLI1-2 and SOX2. These TFs were predicted to regulate HCN4 expression in the SN. Markers for different cells: fibroblasts (COL1A1), fat (FABP4), macrophages (CSF1R and CD209), natural killer (GZMA) and mast (TPSAB1) were significantly more expressed in the SN vs. RA. Interestingly, RUNX1-3, CEBPA and GLI1 also regulate expression of these cells. MiR-486-3p inhibits HCN4 and markers involved in immune response. MAJOR CONCLUSIONS: In conclusion, RUNX1-2, CSF1R, TPSAB1, COL1A1 and HCN4 are highly expressed in the SN but not miR-486-3p. Their complex interactions can be used to treat SN dysfunction such as bradycardia. Interestingly, another research group recently reported miR-486-3p is upregulated in blood samples from severe COVID-19 patients who suffer from bradycardia.


Subject(s)
COVID-19 , MicroRNAs , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , MicroRNAs/genetics , SARS-CoV-2 , Sinoatrial Node , Transcription Factors/genetics
12.
Front Physiol ; 12: 592229, 2021.
Article in English | MEDLINE | ID: mdl-33746765

ABSTRACT

BACKGROUND: The sinoatrial/sinus node (SAN) is the primary pacemaker of the heart. In humans, SAN is surrounded by the paranodal area (PNA). Although the PNA function remains debated, it is thought to act as a subsidiary atrial pacemaker (SAP) tissue and become the dominant pacemaker in the setting of sinus node disease (SND). Large animal models of SND allow characterization of SAP, which might be a target for novel treatment strategies for SAN diseases. METHODS: A goat model of SND was developed (n = 10) by epicardially ablating the SAN and validated by mapping of emergent SAP locations through an ablation catheter and surface electrocardiogram (ECG). Structural characterization of the goat SAN and SAP was assessed by histology and immunofluorescence techniques. RESULTS: When the SAN was ablated, SAPs featured a shortened atrioventricular conduction, consistent with the location in proximity of atrioventricular junction. SAP recovery time showed significant prolongation compared to the SAN recovery time, followed by a decrease over a follow-up of 4 weeks. Like the SAN tissue, the SAP expressed the main isoform of pacemaker hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) and Na+/Ca2+ exchanger 1 (NCX1) and no high conductance connexin 43 (Cx43). Structural characterization of the right atrium (RA) revealed that the SAN was located at the earliest activation [i.e., at the junction of the superior vena cava (SVC) with the RA] and was surrounded by the paranodal-like tissue, extending down to the inferior vena cava (IVC). Emerged SAPs were localized close to the IVC and within the thick band of the atrial muscle known as the crista terminalis (CT). CONCLUSIONS: SAN ablation resulted in the generation of chronic SAP activity in 60% of treated animals. SAP displayed development over time and was located within the previously discovered PNA in humans, suggesting its role as dominant pacemaker in SND. Therefore, SAP in goat constitutes a promising stable target for electrophysiological modification to construct a fully functioning pacemaker.

13.
Circ Genom Precis Med ; 14(2): e003144, 2021 04.
Article in English | MEDLINE | ID: mdl-33629867

ABSTRACT

BACKGROUND: KCNMA1 encodes the α-subunit of the large-conductance Ca2+-activated K+ channel, KCa1.1, and lies within a linkage interval for atrial fibrillation (AF). Insights into the cardiac functions of KCa1.1 are limited, and KCNMA1 has not been investigated as an AF candidate gene. METHODS: The KCNMA1 gene was sequenced in 118 patients with familial AF. The role of KCa1.1 in normal cardiac structure and function was evaluated in humans, mice, zebrafish, and fly. A novel KCNMA1 variant was functionally characterized. RESULTS: A complex KCNMA1 variant was identified in 1 kindred with AF. To evaluate potential disease mechanisms, we first evaluated the distribution of KCa1.1 in normal hearts using immunostaining and immunogold electron microscopy. KCa1.1 was seen throughout the atria and ventricles in humans and mice, with strong expression in the sinus node. In an ex vivo murine sinoatrial node preparation, addition of the KCa1.1 antagonist, paxilline, blunted the increase in beating rate induced by adrenergic receptor stimulation. Knockdown of the KCa1.1 ortholog, kcnma1b, in zebrafish embryos resulted in sinus bradycardia with dilatation and reduced contraction of the atrium and ventricle. Genetic inactivation of the Drosophila KCa1.1 ortholog, slo, systemically or in adult stages, also slowed the heartbeat and produced fibrillatory cardiac contractions. Electrophysiological characterization of slo-deficient flies revealed bursts of action potentials, reflecting increased events of fibrillatory arrhythmias. Flies with cardiac-specific overexpression of the human KCNMA1 mutant also showed increased heart period and bursts of action potentials, similar to the KCa1.1 loss-of-function models. CONCLUSIONS: Our data point to a highly conserved role of KCa1.1 in sinus node function in humans, mice, zebrafish, and fly and suggest that KCa1.1 loss of function may predispose to AF.


Subject(s)
Atrial Fibrillation/pathology , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Sinoatrial Node/metabolism , Action Potentials/drug effects , Animals , Atrial Fibrillation/genetics , Atrial Function/drug effects , Atrial Function/physiology , Embryo, Nonmammalian/metabolism , Heart Atria/metabolism , Heart Atria/pathology , Humans , Indoles/chemistry , Indoles/metabolism , Indoles/pharmacology , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Mice , Myocardial Contraction , Pedigree , Polymorphism, Genetic , RNA Interference , RNA, Small Interfering/metabolism , RNA, Small Interfering/pharmacology , Zebrafish , Zebrafish Proteins/antagonists & inhibitors , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
14.
Sci Rep ; 11(1): 3565, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33574422

ABSTRACT

Physiological systems vary in a day-night manner anticipating increased demand at a particular time. Heart is no exception. Cardiac output is primarily determined by heart rate and unsurprisingly this varies in a day-night manner and is higher during the day in the human (anticipating increased day-time demand). Although this is attributed to a day-night rhythm in post-translational ion channel regulation in the heart's pacemaker, the sinus node, by the autonomic nervous system, we investigated whether there is a day-night rhythm in transcription. RNAseq revealed that ~ 44% of the sinus node transcriptome (7134 of 16,387 transcripts) has a significant day-night rhythm. The data revealed the oscillating components of an intrinsic circadian clock. Presumably this clock (or perhaps the master circadian clock in the suprachiasmatic nucleus) is responsible for the rhythm observed in the transcriptional machinery, which in turn is responsible for the rhythm observed in the transcriptome. For example, there is a rhythm in transcripts responsible for the two principal pacemaker mechanisms (membrane and Ca2+ clocks), transcripts responsible for receptors and signalling pathways known to control pacemaking, transcripts from genes identified by GWAS as determinants of resting heart rate, and transcripts from genes responsible for familial and acquired sick sinus syndrome.


Subject(s)
Circadian Clocks/genetics , Circadian Rhythm/genetics , Heart/physiology , Transcriptome/genetics , Autonomic Nervous System/metabolism , Genome-Wide Association Study , Heart Rate/genetics , Humans , Ion Channels/genetics , RNA-Seq , Signal Transduction/genetics , Sinoatrial Node/metabolism , Exome Sequencing
15.
Article in English | MEDLINE | ID: mdl-33582263

ABSTRACT

Birds developed endothermy and four-chambered high-performance heart independently from mammals. Though avian embryos are extensively studied and widely used as various models for heart research, little is known about cardiac physiology of adult birds. Meanwhile, cardiac electrophysiology is in search for easily accessible and relevant model objects which resemble human myocardium in the pattern of repolarizing currents (IKr, IKs, IKur and Ito). This study focuses on the configuration of electrical activity and electrophysiological phenotype of working myocardium in adult Japanese quails (Coturnix japonica). The resting membrane potential and action potential (AP) waveform in quail atrial myocardium were similar to that in working myocardium of rodents. Using whole-cell patch clamp and sharp glass microelectrodes, we demonstrated that the repolarization of quail atrial and ventricular myocardium is determined by voltage-dependent potassium currents IKr, IKs and Ito - the latter was previously considered as an exclusive evolutionary feature of mammals. The specific blockers of these currents, dofetilide (3 µmol l-1), HMR 1556 (30 µmol l-1) and 4-aminopyridine (3 mmol l-1), prolonged AP in both ventricular and atrial myocardial preparations. The expression of the corresponding channels responsible for these currents in quail myocardium was investigated with quantitative RT-PCR and western blotting. In conclusion, the described pattern of repolarizing ionic currents and channels in quail myocardium makes this species a novel and suitable experimental model for translational cardiac research and reveals new information related to the evolution of cardiac electrophysiology in vertebrates.


Subject(s)
Coturnix/physiology , Heart/physiology , Potassium Channels/physiology , Translational Research, Biomedical , Animals , Female , Male , Patch-Clamp Techniques
16.
Heart Rhythm ; 18(5): 801-810, 2021 05.
Article in English | MEDLINE | ID: mdl-33278629

ABSTRACT

BACKGROUND: Heart rate follows a diurnal variation, and slow heart rhythms occur primarily at night. OBJECTIVE: The lower heart rate during sleep is assumed to be neural in origin, but here we tested whether a day-night difference in intrinsic pacemaking is involved. METHODS: In vivo and in vitro electrocardiographic recordings, vagotomy, transgenics, quantitative polymerase chain reaction, Western blotting, immunohistochemistry, patch clamp, reporter bioluminescence recordings, and chromatin immunoprecipitation were used. RESULTS: The day-night difference in the average heart rate of mice was independent of fluctuations in average locomotor activity and persisted under pharmacological, surgical, and transgenic interruption of autonomic input to the heart. Spontaneous beating rate of isolated (ie, denervated) sinus node (SN) preparations exhibited a day-night rhythm concomitant with rhythmic messenger RNA expression of ion channels including hyperpolarization-activated cyclic nucleotide-gated potassium channel 4 (HCN4). In vitro studies demonstrated 24-hour rhythms in the human HCN4 promoter and the corresponding funny current. The day-night heart rate difference in mice was abolished by HCN block, both in vivo and in the isolated SN. Rhythmic expression of canonical circadian clock transcription factors, for example, Brain and muscle ARNT-Like 1 (BMAL1) and Cryptochrome (CRY) was identified in the SN and disruption of the local clock (by cardiomyocyte-specific knockout of Bmal1) abolished the day-night difference in Hcn4 and intrinsic heart rate. Chromatin immunoprecipitation revealed specific BMAL1 binding sites on Hcn4, linking the local clock with intrinsic rate control. CONCLUSION: The circadian variation in heart rate involves SN local clock-dependent Hcn4 rhythmicity. Data reveal a novel regulator of heart rate and mechanistic insight into bradycardia during sleep.


Subject(s)
Bradycardia/genetics , Circadian Clocks/physiology , Electrocardiography/methods , Gene Expression Regulation , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , RNA/genetics , Sinoatrial Node/physiopathology , Animals , Bradycardia/metabolism , Bradycardia/physiopathology , Disease Models, Animal , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/biosynthesis , Mice
17.
Acta Physiol (Oxf) ; 231(4): e13597, 2021 04.
Article in English | MEDLINE | ID: mdl-33306261

ABSTRACT

AIM: This study is aimed at investigation of electrophysiological effects of α1-adrenoreceptor (α1-AR) stimulation in the rat superior vena cava (SVC) myocardium, which is one of the sources of proarrhythmic activity. METHODS: α1-ARs agonists (phenylephrine-PHE or norepinephrine in presence of atenolol-NE + ATL) were applied to SVC and atrial tissue preparations or isolated cardiomyocytes, which were examined using optical mapping, glass microelectrodes or whole-cell patch clamp. α1-ARs distribution was evaluated using immunofluorescence. Kir2.X mRNA and protein level were estimated using RT-PCR and Western blotting. RESULTS: PHE or NE + ATL application caused a significant suppression of the conduction velocity (CV) of excitation and inexcitability in SVC, an increase in the duration of electrically evoked action potentials (APs), a decrease in the maximum upstroke velocity (dV/dtmax ) and depolarization of the resting membrane potential (RMP) in SVC to a greater extent than in atria. The effects induced by α1-ARs activation in SVC were attenuated by protein kinase C inhibition (PKC). The whole-cell patch clamp revealed PHE-induced suppression of outward component of IK1 inward rectifier current in isolated SVC, but not atrial myocytes. These effects can be mediated by α1A subtype of α-ARs found in abundance in rat SVC. The basal IK1 level in SVC was much lower than in atria as a result of the weaker expression of Kir2.2 channels. CONCLUSION: Therefore, the reduced density of IK1 in rat SVC cardiomyocytes and sensitivity of this current to α1A-AR stimulation via PKC-dependent pathways might lead to proarrhythmic conduction in SVC myocardium by inducing RMP depolarization, AP prolongation, CV and dV/dtmax decrease.


Subject(s)
Potassium , Receptors, Adrenergic, alpha-1 , Vena Cava, Superior , Action Potentials , Animals , Heart Atria , Myocardium , Rats
18.
J Am Heart Assoc ; 9(20): e016590, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33059532

ABSTRACT

Background The sinus node (SN) is the primary pacemaker of the heart. SN myocytes possess distinctive action potential morphology with spontaneous diastolic depolarization because of a unique expression of ion channels and Ca2+-handling proteins. MicroRNAs (miRs) inhibit gene expression. The role of miRs in controlling the expression of genes responsible for human SN pacemaking and conduction has not been explored. The aim of this study was to determine miR expression profile of the human SN as compared with that of non-pacemaker atrial muscle. Methods and Results SN and atrial muscle biopsies were obtained from donor or post-mortem hearts (n=10), histology/immunolabeling were used to characterize the tissues, TaqMan Human MicroRNA Arrays were used to measure 754 miRs, Ingenuity Pathway Analysis was used to identify miRs controlling SN pacemaker gene expression. Eighteen miRs were significantly more and 48 significantly less abundant in the SN than atrial muscle. The most interesting miR was miR-486-3p predicted to inhibit expression of pacemaking channels: HCN1 (hyperpolarization-activated cyclic nucleotide-gated 1), HCN4, voltage-gated calcium channel (Cav)1.3, and Cav3.1. A luciferase reporter gene assay confirmed that miR-486-3p can control HCN4 expression via its 3' untranslated region. In ex vivo SN preparations, transfection with miR-486-3p reduced the beating rate by ≈35±5% (P<0.05) and HCN4 expression (P<0.05). Conclusions The human SN possesses a unique pattern of expression of miRs predicted to target functionally important genes. miR-486-3p has an important role in SN pacemaker activity by targeting HCN4, making it a potential target for therapeutic treatment of SN disease such as sinus tachycardia.


Subject(s)
Heart Rate/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , MicroRNAs/genetics , Muscle Proteins/genetics , Potassium Channels/genetics , Sinoatrial Node , Action Potentials/genetics , Animals , Calcium Channels/genetics , Gene Expression Profiling , Humans , RNA, Small Untranslated/genetics , Rats , Sinoatrial Node/pathology , Sinoatrial Node/physiology
19.
Sci Rep ; 10(1): 11279, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32647133

ABSTRACT

Bradyarrhythmias are an important cause of mortality in heart failure and previous studies indicate a mechanistic role for electrical remodelling of the key pacemaking ion channel HCN4 in this process. Here we show that, in a mouse model of heart failure in which there is sinus bradycardia, there is upregulation of a microRNA (miR-370-3p), downregulation of the pacemaker ion channel, HCN4, and downregulation of the corresponding ionic current, If, in the sinus node. In vitro, exogenous miR-370-3p inhibits HCN4 mRNA and causes downregulation of HCN4 protein, downregulation of If, and bradycardia in the isolated sinus node. In vivo, intraperitoneal injection of an antimiR to miR-370-3p into heart failure mice silences miR-370-3p and restores HCN4 mRNA and protein and If in the sinus node and blunts the sinus bradycardia. In addition, it partially restores ventricular function and reduces mortality. This represents a novel approach to heart failure treatment.


Subject(s)
Gene Silencing , Heart Failure/genetics , Heart Failure/physiopathology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , MicroRNAs/metabolism , Sinoatrial Node/physiopathology , Animals , Binding Sites , Body Weight , Cardiomegaly , Computational Biology , Down-Regulation , Fibrosis , Heart Failure/metabolism , Heart Rate , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Rats
20.
Nat Commun ; 11(1): 512, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31980605

ABSTRACT

Mechanisms for human sinoatrial node (SAN) dysfunction are poorly understood and whether human SAN excitability requires voltage-gated sodium channels (Nav) remains controversial. Here, we report that neuronal (n)Nav blockade and selective nNav1.6 blockade during high-resolution optical mapping in explanted human hearts depress intranodal SAN conduction, which worsens during autonomic stimulation and overdrive suppression to conduction failure. Partial cardiac (c)Nav blockade further impairs automaticity and intranodal conduction, leading to beat-to-beat variability and reentry. Multiple nNav transcripts are higher in SAN vs atria; heterogeneous alterations of several isoforms, specifically nNav1.6, are associated with heart failure and chronic alcohol consumption. In silico simulations of Nav distributions suggest that INa is essential for SAN conduction, especially in fibrotic failing hearts. Our results reveal that not only cNav but nNav are also integral for preventing disease-induced failure in human SAN intranodal conduction. Disease-impaired nNav may underlie patient-specific SAN dysfunctions and should be considered to treat arrhythmias.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Heart Conduction System/physiopathology , Neurons/metabolism , Sinoatrial Node/physiopathology , Sodium Channels/metabolism , Action Potentials/physiology , Adult , Aged , Alcoholism/genetics , Arrhythmias, Cardiac/genetics , Chronic Disease , Computer Simulation , Female , Heart Atria/metabolism , Heart Atria/physiopathology , Heart Conduction System/metabolism , Heart Failure/genetics , Humans , Male , Middle Aged , Models, Cardiovascular , Optical Imaging , Protein Subunits/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sinoatrial Node/metabolism , Sodium Channels/genetics , Stress, Physiological , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...