Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(4): e2315592121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38227652

ABSTRACT

γδ T cells are essential for immune defense and modulating physiological processes. While they have the potential to recognize large numbers of antigens through somatic gene rearrangement, the antigens which trigger most γδ T cell response remain unidentified, and the role of antigen recognition in γδ T cell function is contentious. Here, we show that some γδ T cell receptors (TCRs) exhibit polyspecificity, recognizing multiple ligands of diverse molecular nature. These ligands include haptens, metabolites, neurotransmitters, posttranslational modifications, as well as peptides and proteins of microbial and host origin. Polyspecific γδ T cells are enriched among activated cells in naive mice and the responding population in infection. They express diverse TCR sequences, have different functional potentials, and include the innate-like γδ T cells, such as the major IL-17 responders in various pathological/physiological conditions. We demonstrate that encountering their antigenic microbiome metabolite maintains their homeostasis and functional response, indicating that their ability to recognize multiple ligands is essential for their function. Human γδ T cells with similar polyspecificity also respond to various immune challenges. This study demonstrates that polyspecificity is a prevalent feature of γδ T cell antigen recognition, which enables rapid and robust T cell responses to a wide range of challenges, highlighting a unique function of γδ T cells.


Subject(s)
Blood Group Antigens , Receptors, Antigen, T-Cell, gamma-delta , Humans , Mice , Animals , Antigens , Haptens
3.
Cell ; 186(16): 3400-3413.e20, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37541197

ABSTRACT

Approximately 15% of US adults have circulating levels of uric acid above its solubility limit, which is causally linked to the disease gout. In most mammals, uric acid elimination is facilitated by the enzyme uricase. However, human uricase is a pseudogene, having been inactivated early in hominid evolution. Though it has long been known that uric acid is eliminated in the gut, the role of the gut microbiota in hyperuricemia has not been studied. Here, we identify a widely distributed bacterial gene cluster that encodes a pathway for uric acid degradation. Stable isotope tracing demonstrates that gut bacteria metabolize uric acid to xanthine or short chain fatty acids. Ablation of the microbiota in uricase-deficient mice causes severe hyperuricemia, and anaerobe-targeted antibiotics increase the risk of gout in humans. These data reveal a role for the gut microbiota in uric acid excretion and highlight the potential for microbiome-targeted therapeutics in hyperuricemia.


Subject(s)
Gout , Hominidae , Hyperuricemia , Adult , Animals , Humans , Mice , Gout/genetics , Gout/metabolism , Hominidae/genetics , Hyperuricemia/genetics , Mammals/metabolism , Urate Oxidase/genetics , Uric Acid/metabolism , Evolution, Molecular
4.
Methods Mol Biol ; 2675: 65-76, 2023.
Article in English | MEDLINE | ID: mdl-37258756

ABSTRACT

Quantification of amino acids in biological samples is a critical tool for studying metabolism. Although many methods for amino acid analysis exist, important considerations include ease of sample preparation, dynamic range, reproducibility, instrument availability, and throughput. Here, we present a simple, rapid, and robust method for the analysis of amino acids by chemical derivatization and liquid chromatography-mass spectrometry (LC-MS). We provide a detailed protocol for the analysis of 20 proteinogenic amino acids in biological samples which will enable straightforward implementation on modern LC-MS instruments.


Subject(s)
Amino Acids , Specimen Handling , Amino Acids/chemistry , Reproducibility of Results , Chromatography, Liquid/methods , Mass Spectrometry
5.
PLoS Biol ; 21(5): e3002125, 2023 05.
Article in English | MEDLINE | ID: mdl-37205710

ABSTRACT

Human gut bacteria perform diverse metabolic functions with consequences for host health. The prevalent and disease-linked Actinobacterium Eggerthella lenta performs several unusual chemical transformations, but it does not metabolize sugars and its core growth strategy remains unclear. To obtain a comprehensive view of the metabolic network of E. lenta, we generated several complementary resources: defined culture media, metabolomics profiles of strain isolates, and a curated genome-scale metabolic reconstruction. Stable isotope-resolved metabolomics revealed that E. lenta uses acetate as a key carbon source while catabolizing arginine to generate ATP, traits which could be recapitulated in silico by our updated metabolic model. We compared these in vitro findings with metabolite shifts observed in E. lenta-colonized gnotobiotic mice, identifying shared signatures across environments and highlighting catabolism of the host signaling metabolite agmatine as an alternative energy pathway. Together, our results elucidate a distinctive metabolic niche filled by E. lenta in the gut ecosystem. Our culture media formulations, atlas of metabolomics data, and genome-scale metabolic reconstructions form a freely available collection of resources to support further study of the biology of this prevalent gut bacterium.


Subject(s)
Actinobacteria , Gastrointestinal Microbiome , Humans , Mice , Animals , Systems Biology , Ecosystem , Actinobacteria/metabolism
6.
Nat Biotechnol ; 41(10): 1416-1423, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36782070

ABSTRACT

The gut microbiota produce hundreds of small molecules, many of which modulate host physiology. Although efforts have been made to identify biosynthetic genes for secondary metabolites, the chemical output of the gut microbiome consists predominantly of primary metabolites. Here we introduce the gutSMASH algorithm for identification of primary metabolic gene clusters, and we used it to systematically profile gut microbiome metabolism, identifying 19,890 gene clusters in 4,240 high-quality microbial genomes. We found marked differences in pathway distribution among phyla, reflecting distinct strategies for energy capture. These data explain taxonomic differences in short-chain fatty acid production and suggest a characteristic metabolic niche for each taxon. Analysis of 1,135 individuals from a Dutch population-based cohort shows that the level of microbiome-derived metabolites in plasma and feces is almost completely uncorrelated with the metagenomic abundance of corresponding metabolic genes, indicating a crucial role for pathway-specific gene regulation and metabolite flux. This work is a starting point for understanding differences in how bacterial taxa contribute to the chemistry of the microbiome.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Gastrointestinal Microbiome/genetics , Feces/microbiology , Bacteria , Metabolic Networks and Pathways/genetics
7.
Nat Commun ; 14(1): 512, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36720857

ABSTRACT

The human gut microbiota produces dozens of small molecules that circulate in blood, accumulate to comparable levels as pharmaceutical drugs, and influence host physiology. Despite the importance of these metabolites to human health and disease, the origin of most microbially-produced molecules and their fate in the host remains largely unknown. Here, we uncover a host-microbe co-metabolic pathway for generation of hippuric acid, one of the most abundant organic acids in mammalian urine. Combining stable isotope tracing with bacterial and host genetics, we demonstrate reduction of phenylalanine to phenylpropionic acid by gut bacteria; the host re-oxidizes phenylpropionic acid involving medium-chain acyl-CoA dehydrogenase (MCAD). Generation of germ-free male and female MCAD-/- mice enabled gnotobiotic colonization combined with untargeted metabolomics to identify additional microbial metabolites processed by MCAD in host circulation. Our findings uncover a host-microbe pathway for the abundant, non-toxic phenylalanine metabolite hippurate and identify ß-oxidation via MCAD as a novel mechanism by which mammals metabolize microbiota-derived metabolites.


Subject(s)
Hippurates , Metabolomics , Animals , Female , Humans , Male , Mice , Acyl-CoA Dehydrogenase , Phenylalanine
8.
Clin Transl Sci ; 15(12): 2812-2837, 2022 12.
Article in English | MEDLINE | ID: mdl-36099474

ABSTRACT

The human gastrointestinal tract is home to a dense population of microorganisms whose metabolism impacts human health and physiology. The gut microbiome encodes millions of genes, the products of which endow our bodies with unique biochemical activities. In the context of drug metabolism, microbial biochemistry in the gut influences humans in two major ways: (1) by producing small molecules that modulate expression and activity of human phase I and II pathways; and (2) by directly modifying drugs administered to humans to yield active, inactive, or toxic metabolites. Although the capacity of the microbiome to modulate drug metabolism has long been known, recent studies have explored these interactions on a much broader scale and have revealed an unprecedented scope of microbial drug metabolism. The implication of this work is that we might be able to predict the capacity of an individual's microbiome to metabolize drugs and use this information to avoid toxicity and inform proper dosing. Here, we provide a tutorial of how to study the microbiome in the context of drug metabolism, focusing on in vitro, rodent, and human studies. We then highlight some limitations and opportunities for the field.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract
9.
Physiol Rep ; 10(14): e15357, 2022 07.
Article in English | MEDLINE | ID: mdl-35851836

ABSTRACT

Ob/ob mice have recently emerged as a model for obesity-related hyperoxaluria as they are obese and excrete more urine oxalate compared to wild type mice. Ob/ob mice are deficient of leptin and develop obesity with hyperphagia and hyperinsulinemia. We hypothesized that insulin resistance and the gut microbiome contribute to hyperoxaluria in ob/ob mice. We developed a new liquid chromatography-mass spectrometry assay for urine oxalate and first compared urine oxalate excretion in ob/ob mice before and after ablation of intestinal bacteria with a standard antibiotic cocktail. We then compared urine oxalate excretion in ob/ob mice before and after leptin replacement or pioglitazone treatment, two maneuvers that reduce insulin resistance in ob/ob mice. Ob/ob mice excreted more oxalate into the urine in a 24-h period compared to wild type mice, but antibiotic, leptin, or pioglitazone treatment did not change urine oxalate excretion in ob/ob mice. Unexpectedly, we found that when food intake was carefully matched between ob/ob and wild type mice, the amount of 24-h urine oxalate excretion did not differ between the two mouse strains, suggesting that ob/ob mice excrete more urine oxalate because of hyperphagia. Since the level of urine oxalate excretion in wild type mice in our study was higher than those reported in prior studies, future work will be needed to standardize the measurement of urine oxalate and to define the range of urine oxalate excretion in wild type mice so that accurate and valid comparisons can be made between wild type mice and ob/ob mice or other mouse models.


Subject(s)
Gastrointestinal Microbiome , Hyperoxaluria , Insulin Resistance , Oxalates , Animals , Anti-Bacterial Agents/pharmacology , Hyperoxaluria/etiology , Hyperoxaluria/urine , Hyperphagia/urine , Leptin , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Obese , Obesity/microbiology , Obesity/urine , Oxalates/urine , Pioglitazone/pharmacology
10.
Nature ; 607(7919): 585-592, 2022 07.
Article in English | MEDLINE | ID: mdl-35732737

ABSTRACT

The regenerative potential of mammalian peripheral nervous system neurons after injury is critically limited by their slow axonal regenerative rate1. Regenerative ability is influenced by both injury-dependent and injury-independent mechanisms2. Among the latter, environmental factors such as exercise and environmental enrichment have been shown to affect signalling pathways that promote axonal regeneration3. Several of these pathways, including modifications in gene transcription and protein synthesis, mitochondrial metabolism and the release of neurotrophins, can be activated by intermittent fasting (IF)4,5. However, whether IF influences the axonal regenerative ability remains to be investigated. Here we show that IF promotes axonal regeneration after sciatic nerve crush in mice through an unexpected mechanism that relies on the gram-positive gut microbiome and an increase in the gut bacteria-derived metabolite indole-3-propionic acid (IPA) in the serum. IPA production by Clostridium sporogenes is required for efficient axonal regeneration, and delivery of IPA after sciatic injury significantly enhances axonal regeneration, accelerating the recovery of sensory function. Mechanistically, RNA sequencing analysis from sciatic dorsal root ganglia suggested a role for neutrophil chemotaxis in the IPA-dependent regenerative phenotype, which was confirmed by inhibition of neutrophil chemotaxis. Our results demonstrate the ability of a microbiome-derived metabolite, such as IPA, to facilitate regeneration and functional recovery of sensory axons through an immune-mediated mechanism.


Subject(s)
Indoles , Nerve Regeneration , Propionates , Wound Healing , Animals , Mice , Axons/drug effects , Axons/physiology , Chemotaxis, Leukocyte , Clostridium/metabolism , Fasting , Ganglia, Spinal/metabolism , Gastrointestinal Microbiome , Indoles/blood , Indoles/metabolism , Indoles/pharmacology , Nerve Crush , Nerve Growth Factors/metabolism , Nerve Regeneration/drug effects , Neutrophils/cytology , Neutrophils/immunology , Propionates/blood , Propionates/metabolism , Propionates/pharmacology , Recovery of Function , Sciatic Nerve/injuries , Sequence Analysis, RNA , Wound Healing/drug effects
11.
Nat Microbiol ; 7(5): 695-706, 2022 05.
Article in English | MEDLINE | ID: mdl-35505245

ABSTRACT

Gut bacteria face a key problem in how they capture enough energy to sustain their growth and physiology. The gut bacterium Clostridium sporogenes obtains its energy by utilizing amino acids in pairs, coupling the oxidation of one to the reduction of another-the Stickland reaction. Oxidative pathways produce ATP via substrate-level phosphorylation, whereas reductive pathways are thought to balance redox. In the present study, we investigated whether these reductive pathways are also linked to energy generation and the production of microbial metabolites that may circulate and impact host physiology. Using metabolomics, we find that, during growth in vitro, C. sporogenes produces 15 metabolites, 13 of which are present in the gut of C. sporogenes-colonized mice. Four of these compounds are reductive Stickland metabolites that circulate in the blood of gnotobiotic mice and are also detected in plasma from healthy humans. Gene clusters for reductive Stickland pathways suggest involvement of electron transfer proteins, and experiments in vitro demonstrate that reductive metabolism is coupled to ATP formation and not just redox balance. Genetic analysis points to the broadly conserved Rnf complex as a key coupling site for energy transduction. Rnf complex mutants show aberrant amino acid metabolism in a defined medium and are attenuated for growth in the mouse gut, demonstrating a role of the Rnf complex in Stickland metabolism and gut colonization. Our findings reveal that the production of circulating metabolites by a commensal bacterium within the host gut is linked to an ATP-yielding redox process.


Subject(s)
Clostridium , Metabolomics , Adenosine Triphosphate/metabolism , Animals , Bacteria/metabolism , Clostridium/genetics , Clostridium/metabolism , Fermentation , Mice
12.
Nat Metab ; 4(1): 19-28, 2022 01.
Article in English | MEDLINE | ID: mdl-34992297

ABSTRACT

The enteric pathogen Clostridioides difficile (Cd) is responsible for a toxin-mediated infection that causes more than 200,000 recorded hospitalizations and 13,000 deaths in the United States every year1. However, Cd can colonize the gut in the absence of disease symptoms. Prevalence of asymptomatic colonization by toxigenic Cd in healthy populations is high; asymptomatic carriers are at increased risk of infection compared to noncolonized individuals and may be a reservoir for transmission of Cd infection2,3. Elucidating the molecular mechanisms by which Cd persists in the absence of disease is necessary for understanding pathogenesis and developing refined therapeutic strategies. Here, we show with gut microbiome metatranscriptomic analysis that mice recalcitrant to Cd infection and inflammation exhibit increased community-wide expression of arginine and ornithine metabolic pathways. To query Cd metabolism specifically, we leverage RNA sequencing in gnotobiotic mice infected with two wild-type strains (630 and R20291) and isogenic toxin-deficient mutants of these strains to differentiate inflammation-dependent versus -independent transcriptional states. A single operon encoding oxidative ornithine degradation is consistently upregulated across non-toxigenic Cd strains. Combining untargeted and targeted metabolomics with bacterial and host genetics, we demonstrate that both diet- and host-derived sources of ornithine provide a competitive advantage to Cd, suggesting a mechanism for Cd persistence within a non-inflammatory, healthy gut.


Subject(s)
Clostridioides difficile/physiology , Clostridium Infections/metabolism , Clostridium Infections/microbiology , Host-Pathogen Interactions , Ornithine/metabolism , Oxidation-Reduction , Amino Acids/metabolism , Animals , Energy Metabolism , Gastrointestinal Microbiome , Humans , Metabolic Networks and Pathways , Metabolome , Metabolomics/methods , Mice , Nitric Oxide Synthase/metabolism , Oxidative Stress
13.
Nature ; 595(7867): 415-420, 2021 07.
Article in English | MEDLINE | ID: mdl-34262212

ABSTRACT

Gut microorganisms modulate host phenotypes and are associated with numerous health effects in humans, ranging from host responses to cancer immunotherapy to metabolic disease and obesity. However, difficulty in accurate and high-throughput functional analysis of human gut microorganisms has hindered efforts to define mechanistic connections between individual microbial strains and host phenotypes. One key way in which the gut microbiome influences host physiology is through the production of small molecules1-3, yet progress in elucidating this chemical interplay has been hindered by limited tools calibrated to detect the products of anaerobic biochemistry in the gut. Here we construct a microbiome-focused, integrated mass-spectrometry pipeline to accelerate the identification of microbiota-dependent metabolites in diverse sample types. We report the metabolic profiles of 178 gut microorganism strains using our library of 833 metabolites. Using this metabolomics resource, we establish deviations in the relationships between phylogeny and metabolism, use machine learning to discover a previously undescribed type of metabolism in Bacteroides, and reveal candidate biochemical pathways using comparative genomics. Microbiota-dependent metabolites can be detected in diverse biological fluids from gnotobiotic and conventionally colonized mice and traced back to the corresponding metabolomic profiles of cultured bacteria. Collectively, our microbiome-focused metabolomics pipeline and interactive metabolomics profile explorer are a powerful tool for characterizing microorganisms and interactions between microorganisms and their host.


Subject(s)
Bacteria/metabolism , Gastrointestinal Microbiome , Metabolome , Metabolomics/methods , Animals , Bacteria/classification , Bacteria/genetics , Bacteroides/genetics , Bacteroides/metabolism , Genes, Bacterial/genetics , Genomics , Host Microbial Interactions , Humans , Male , Mice , Nitrogen/metabolism , Phenotype , Phylogeny
14.
Nucleic Acids Res ; 49(W1): W263-W270, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34019648

ABSTRACT

Anaerobic bacteria from the human microbiome produce a wide array of molecules at high concentrations that can directly or indirectly affect the host. The production of these molecules, mostly derived from their primary metabolism, is frequently encoded in metabolic gene clusters (MGCs). However, despite the importance of microbiome-derived primary metabolites, no tool existed to predict the gene clusters responsible for their production. For this reason, we recently introduced gutSMASH. gutSMASH can predict 41 different known pathways, including MGCs involved in bioenergetics, but also putative ones that are candidates for novel pathway discovery. To make the tool more user-friendly and accessible, we here present the gutSMASH web server, hosted at https://gutsmash.bioinformatics.nl/. The user can either input the GenBank assembly accession or upload a genome file in FASTA or GenBank format. Optionally, the user can enable additional analyses to obtain further insights into the predicted MGCs. An interactive HTML output (viewable online or downloadable for offline use) provides a user-friendly way to browse functional gene annotations and sequence comparisons with reference gene clusters as well as gene clusters predicted in other genomes. Thus, this web server provides the community with a streamlined and user-friendly interface to analyze the metabolic potential of gut microbiomes.


Subject(s)
Gastrointestinal Microbiome/genetics , Genome, Bacterial , Software , Bacteria/genetics , Bacteria/metabolism , Genomics , Internet
15.
Proc Natl Acad Sci U S A ; 117(44): 27509-27515, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33077598

ABSTRACT

Immune checkpoint-blocking antibodies that attenuate immune tolerance have been used to effectively treat cancer, but they can also trigger severe immune-related adverse events. Previously, we found that Bifidobacterium could mitigate intestinal immunopathology in the context of CTLA-4 blockade in mice. Here we examined the mechanism underlying this process. We found that Bifidobacterium altered the composition of the gut microbiota systematically in a regulatory T cell (Treg)-dependent manner. Moreover, this altered commensal community enhanced both the mitochondrial fitness and the IL-10-mediated suppressive functions of intestinal Tregs, contributing to the amelioration of colitis during immune checkpoint blockade.


Subject(s)
Autoimmune Diseases/prevention & control , Bifidobacterium/immunology , Gastrointestinal Microbiome/immunology , Probiotics/administration & dosage , T-Lymphocytes, Regulatory/immunology , Animals , Autoimmune Diseases/chemically induced , Autoimmune Diseases/immunology , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/metabolism , Disease Models, Animal , Female , Humans , Immune Checkpoint Inhibitors/adverse effects , Immune Tolerance , Interleukin-10/genetics , Interleukin-10/metabolism , Mice , Mice, Knockout , T-Lymphocytes, Regulatory/metabolism
16.
Nat Biomed Eng ; 4(9): 847-848, 2020 09.
Article in English | MEDLINE | ID: mdl-32913348
17.
Adv Nutr ; 11(2): 200-215, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31386148

ABSTRACT

While conventional nutrition research has yielded biomarkers such as doubly labeled water for energy metabolism and 24-h urinary nitrogen for protein intake, a critical need exists for additional, equally robust biomarkers that allow for objective assessment of specific food intake and dietary exposure. Recent advances in high-throughput MS combined with improved metabolomics techniques and bioinformatic tools provide new opportunities for dietary biomarker development. In September 2018, the NIH organized a 2-d workshop to engage nutrition and omics researchers and explore the potential of multiomics approaches in nutritional biomarker research. The current Perspective summarizes key gaps and challenges identified, as well as the recommendations from the workshop that could serve as a guide for scientists interested in dietary biomarkers research. Topics addressed included study designs for biomarker development, analytical and bioinformatic considerations, and integration of dietary biomarkers with other omics techniques. Several clear needs were identified, including larger controlled feeding studies, testing a variety of foods and dietary patterns across diverse populations, improved reporting standards to support study replication, more chemical standards covering a broader range of food constituents and human metabolites, standardized approaches for biomarker validation, comprehensive and accessible food composition databases, a common ontology for dietary biomarker literature, and methodologic work on statistical procedures for intake biomarker discovery. Multidisciplinary research teams with appropriate expertise are critical to moving forward the field of dietary biomarkers and producing robust, reproducible biomarkers that can be used in public health and clinical research.


Subject(s)
Biomarkers/analysis , Diet , Metabolomics/methods , Biomarkers/blood , Biomarkers/urine , Food , Genomics , Humans , Metagenomics , Nutritional Physiological Phenomena/genetics , Nutritional Sciences/methods , Nutritional Status , Reproducibility of Results
18.
Annu Rev Pathol ; 15: 345-369, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31622559

ABSTRACT

The human gastrointestinal tract is home to an incredibly dense population of microbes. These microbes employ unique strategies to capture energy in this largely anaerobic environment. In the process of breaking down dietary- and host-derived substrates, the gut microbiota produce a broad range of metabolic products that accumulate to high levels in the gut. Increasingly, studies are revealing that these chemicals impact host biology, either by acting on cells within the gastrointestinal tract or entering circulation and exerting their effects at distal sites within the body. Given the high level of functional diversity in the gut microbiome and the varied diets that we consume, the repertoire of microbiota-derived molecules within our bodies varies dramatically across individuals. Thus, the microbes in our gut and the metabolic end products they produce represent a phenotypic lever that we can potentially control to develop new therapeutics for personalized medicine. Here, we review current understanding of how microbes in the gastrointestinal tract contribute to the molecules within our gut and those that circulate within our bodies. We also highlight examples of how these molecules affect host physiology and discuss potential strategies for controlling their production to promote human health and to treat disease.


Subject(s)
Gastrointestinal Microbiome/physiology , Health , Metabolic Diseases/microbiology , Metabolome/physiology , Diet , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Humans , Metabolic Diseases/etiology
19.
Science ; 366(6471)2019 12 13.
Article in English | MEDLINE | ID: mdl-31831639

ABSTRACT

The gut microbiota produce hundreds of molecules that are present at high concentrations in the host circulation. Unraveling the contribution of each molecule to host biology remains difficult. We developed a system for constructing clean deletions in Clostridium spp., the source of many molecules from the gut microbiome. By applying this method to the model commensal organism Clostridium sporogenes, we knocked out genes for 10 C. sporogenes-derived molecules that accumulate in host tissues. In mice colonized by a C. sporogenes for which the production of branched short-chain fatty acids was knocked out, we discovered that these microbial products have immunoglobulin A-modulatory activity.


Subject(s)
Clostridium/genetics , Clostridium/metabolism , Gastrointestinal Microbiome/genetics , Gene Editing/methods , Host Microbial Interactions , Metabolic Networks and Pathways/genetics , Animals , CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Gene Deletion , Mice , Mice, Inbred Strains
20.
NPJ Biofilms Microbiomes ; 5(1): 37, 2019.
Article in English | MEDLINE | ID: mdl-31885873

ABSTRACT

The bacterial species living in the gut mediate many aspects of biological processes such as nutrition and activation of adaptive immunity. In addition, commensal fungi residing in the intestine also influence host health. Although the interaction of bacterium and fungus has been shown, its precise mechanism during colonization of the human intestine remains largely unknown. Here, we show interaction between bacterial and fungal species for utilization of dietary components driving their efficient growth in the intestine. Next generation sequencing of fecal samples from Japanese and Indian adults revealed differential patterns of bacterial and fungal composition. In particular, Indians, who consume more plant polysaccharides than Japanese, harbored increased numbers of Prevotella and Candida. Candida spp. showed strong growth responses to the plant polysaccharide arabinoxylan in vitro. Furthermore, the culture supernatants of Candida spp. grown with arabinoxylan promoted rapid proliferation of Prevotella copri. Arabinose was identified as a potential growth-inducing factor in the Candida culture supernatants. Candida spp. exhibited a growth response to xylose, but not to arabinose, whereas P. copri proliferated in response to both xylose and arabinose. Candida spp., but not P. copri, colonized the intestine of germ-free mice. However, P. copri successfully colonized mouse intestine already harboring Candida. These findings demonstrate a proof of concept that fungal members of gut microbiota can facilitate a colonization of the intestine by their bacterial counterparts, potentially mediated by a dietary metabolite.


Subject(s)
Bacteria/growth & development , Bacteria/metabolism , Diet/methods , Fungi/growth & development , Fungi/metabolism , Gastrointestinal Microbiome , Microbial Interactions , Animals , Bacteria/classification , Feces/microbiology , Fungi/classification , Humans , India , Japan , Mice , Models, Animal , Polysaccharides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...