Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Thorax ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697843

ABSTRACT

RATIONALE: Lung function in early adulthood is associated with subsequent adverse health outcomes. OBJECTIVES: To ascertain whether stable and reproducible lung function trajectories can be derived in different populations and investigate their association with objective measures of cardiovascular structure and function. METHODS: Using latent profile modelling, we studied three population-based birth cohorts with repeat spirometry data from childhood into early adulthood to identify trajectories of forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC). We used multinomial logistic regression models to investigate early-life predictors of the derived trajectories. We then ascertained the extent of the association between the derived FEV1/FVC trajectories and blood pressure and echocardiographic markers of increased cardiovascular risk and stroke in ~3200 participants at age 24 years in one of our cohorts. RESULTS: We identified four FEV1/FVC trajectories with strikingly similar latent profiles across cohorts (pooled N=6377): above average (49.5%); average (38.3%); below average (10.6%); and persistently low (1.7%). Male sex, wheeze, asthma diagnosis/medication and allergic sensitisation were associated with trajectories with diminished lung function in all cohorts. We found evidence of an increase in cardiovascular risk markers ascertained by echocardiography (including left ventricular mass indexed to height and carotid intima-media thickness) with decreasing FEV1/FVC (with p values for the mean crude effects per-trajectory ranging from 0.10 to p<0.001). In this analysis, we considered trajectories as a pseudo-continuous variable; we confirmed the assumption of linearity in all the regression models. CONCLUSIONS: Childhood lung function trajectories may serve as predictors in the development of not only future lung disease, but also the cardiovascular disease and multimorbidity in adulthood.

2.
Thorax ; 79(5): 403-411, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38124220

ABSTRACT

INTRODUCTION: After puberty, females are more likely to develop asthma and in a more severe form than males. The associations between asthma and sex are complex with multiple intrinsic and external factors. AIM: To evaluate the sex differences in the characteristics and treatment of patients with severe asthma (SA) in a real-world setting. METHODS: Demographic, clinical and treatment characteristics for patients with SA in the UK Severe Asthma Registry (UKSAR) and Optimum Patient Care Research Database (OPCRD) were retrospectively analysed by sex using univariable and multivariable logistic regression analyses adjusted for year, age and hospital/practice. RESULTS: 3679 (60.9% female) patients from UKSAR and 18 369 patients (67.9% female) from OPCRD with SA were included. Females were more likely to be symptomatic with increased Asthma Control Questionnaire-6 (UKSAR adjusted OR (aOR) 1.14, 95% CI 1.09 to 1.18) and Royal College of Physicians-3 Question scores (OPCRD aOR 1.29, 95% CI 1.13 to 1.47). However, they had a higher forced expiratory volume in 1 second per cent (FEV1%) predicted (UKSAR 68.7% vs 64.8%, p<0.001) with no significant difference in peak expiratory flow. Type 2 biomarkers IgE (UKSAR 129 IU/mL vs 208 IU/mL, p<0.001) and FeNO (UKSAR 36ppb vs 46ppb, p<0.001) were lower in females with no significant difference in blood eosinophils or biological therapy. Females were less likely to be on maintenance oral corticosteroids (UKSAR aOR 0.86, 95% CI 0.75 to 0.99) but more likely to be obese (UKSAR aOR 1.67, 95% CI 145 to 1.93; OPCRD SA aOR 1.46, 95% CI 1.34 to 1.58). CONCLUSIONS: Females had increased symptoms and were more likely to be obese despite higher FEV1% predicted and lower type 2 biomarkers with consistent and clinically important differences across both datasets.


Subject(s)
Asthma , Humans , Female , Male , Retrospective Studies , Cross-Sectional Studies , Asthma/drug therapy , Asthma/epidemiology , Biomarkers , Obesity , United Kingdom/epidemiology
3.
Thorax ; 77(3): 292-294, 2022 03.
Article in English | MEDLINE | ID: mdl-34728573

ABSTRACT

Pulmonary function tests are fundamental to the diagnosis and monitoring of respiratory diseases. There is uncertainty around whether potentially infectious aerosols are produced during testing and there are limited data on mitigation strategies to reduce risk to staff. Healthy volunteers and patients with lung disease underwent standardised spirometry, peak flow and FENO assessments. Aerosol number concentration was sampled using an aerodynamic particle sizer and an optical particle sizer. Measured aerosol concentrations were compared with breathing, speaking and voluntary coughing. Mitigation strategies included a standard viral filter and a full-face mask normally used for exercise testing (to mitigate induced coughing). 147 measures were collected from 33 healthy volunteers and 10 patients with lung disease. The aerosol number concentration was highest in coughs (1.45-1.61 particles/cm3), followed by unfiltered peak flow (0.37-0.76 particles/cm3). Addition of a viral filter to peak flow reduced aerosol emission by a factor of 10 without affecting the results. On average, coughs produced 22 times more aerosols than standard spirometry (with filter) in patients and 56 times more aerosols in healthy volunteers. FENO measurement produced negligible aerosols. Cardiopulmonary exercise test (CPET) masks reduced aerosol emission when breathing, speaking and coughing significantly. Lung function testing produces less aerosols than voluntary coughing. CPET masks may be used to reduce aerosol emission from induced coughing. Standard viral filters are sufficiently effective to allow guidelines to remove lung function testing from the list of aerosol-generating procedures.


Subject(s)
Lung , Masks , Aerosols , Healthy Volunteers , Humans , Particle Size , Respiratory Function Tests
4.
Thorax ; 77(3): 276-282, 2022 03.
Article in English | MEDLINE | ID: mdl-34737195

ABSTRACT

INTRODUCTION: continuous positive airway pressure (CPAP) and high-flow nasal oxygen (HFNO) provide enhanced oxygen delivery and respiratory support for patients with severe COVID-19. CPAP and HFNO are currently designated as aerosol-generating procedures despite limited high-quality experimental data. We aimed to characterise aerosol emission from HFNO and CPAP and compare with breathing, speaking and coughing. MATERIALS AND METHODS: Healthy volunteers were recruited to breathe, speak and cough in ultra-clean, laminar flow theatres followed by using CPAP and HFNO. Aerosol emission was measured using two discrete methodologies, simultaneously. Hospitalised patients with COVID-19 had cough recorded using the same methodology on the infectious diseases ward. RESULTS: In healthy volunteers (n=25 subjects; 531 measures), CPAP (with exhalation port filter) produced less aerosol than breathing, speaking and coughing (even with large >50 L/min face mask leaks). Coughing was associated with the highest aerosol emissions of any recorded activity. HFNO was associated with aerosol emission, however, this was from the machine. Generated particles were small (<1 µm), passing from the machine through the patient and to the detector without coalescence with respiratory aerosol, thereby unlikely to carry viral particles. More aerosol was generated in cough from patients with COVID-19 (n=8) than volunteers. CONCLUSIONS: In healthy volunteers, standard non-humidified CPAP is associated with less aerosol emission than breathing, speaking or coughing. Aerosol emission from the respiratory tract does not appear to be increased by HFNO. Although direct comparisons are complex, cough appears to be the main aerosol-generating risk out of all measured activities.


Subject(s)
COVID-19 , Aerosols , Humans , Oxygen , Respiratory System , SARS-CoV-2
5.
Thorax ; 76(4): 399-401, 2021 04.
Article in English | MEDLINE | ID: mdl-33273026

ABSTRACT

The longer-term consequences of SARS-CoV-2 infection are uncertain. Consecutive patients hospitalised with COVID-19 were prospectively recruited to this observational study (n=163). At 8-12 weeks postadmission, survivors were invited to a systematic clinical follow-up. Of 131 participants, 110 attended the follow-up clinic. Most (74%) had persistent symptoms (notably breathlessness and excessive fatigue) and limitations in reported physical ability. However, clinically significant abnormalities in chest radiograph, exercise tests, blood tests and spirometry were less frequent (35%), especially in patients not requiring supplementary oxygen during their acute infection (7%). Results suggest that a holistic approach focusing on rehabilitation and general well-being is paramount.


Subject(s)
COVID-19/therapy , Hospitalization/trends , Pandemics , SARS-CoV-2 , Adult , Aged , COVID-19/epidemiology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prospective Studies , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...