Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Type of study
Publication year range
1.
Acta Crystallogr D Struct Biol ; 78(Pt 6): 698-708, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35647917

ABSTRACT

Serial crystallography is a rapidly growing method that can yield structural insights from microcrystals that were previously considered to be too small to be useful in conventional X-ray crystallography. Here, conditions for growing microcrystals of the photosynthetic reaction centre of Blastochloris viridis within a lipidic cubic phase (LCP) crystallization matrix that employ a seeding protocol utilizing detergent-grown crystals with a different crystal packing are described. LCP microcrystals diffracted to 2.25 Šresolution when exposed to XFEL radiation, which is an improvement of 0.15 Šover previous microcrystal forms. Ubiquinone was incorporated into the LCP crystallization media and the resulting electron density within the mobile QB pocket is comparable to that of other cofactors within the structure. As such, LCP microcrystallization conditions will facilitate time-resolved diffraction studies of electron-transfer reactions to the mobile quinone, potentially allowing the observation of structural changes associated with the two electron-transfer reactions leading to complete reduction of the ubiquinone ligand.


Subject(s)
Photosynthetic Reaction Center Complex Proteins , Crystallization , Crystallography, X-Ray , Lipids/chemistry , Membrane Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Ubiquinone
2.
Nature ; 589(7841): 310-314, 2021 01.
Article in English | MEDLINE | ID: mdl-33268896

ABSTRACT

Photosynthetic reaction centres harvest the energy content of sunlight by transporting electrons across an energy-transducing biological membrane. Here we use time-resolved serial femtosecond crystallography1 using an X-ray free-electron laser2 to observe light-induced structural changes in the photosynthetic reaction centre of Blastochloris viridis on a timescale of picoseconds. Structural perturbations first occur at the special pair of chlorophyll molecules of the photosynthetic reaction centre that are photo-oxidized by light. Electron transfer to the menaquinone acceptor on the opposite side of the membrane induces a movement of this cofactor together with lower amplitude protein rearrangements. These observations reveal how proteins use conformational dynamics to stabilize the charge-separation steps of electron-transfer reactions.


Subject(s)
Photosynthetic Reaction Center Complex Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/metabolism , Bacteriochlorophylls/metabolism , Binding Sites/drug effects , Chlorophyll/metabolism , Chlorophyll/radiation effects , Crystallography , Cytoplasm/metabolism , Electron Transport/drug effects , Electrons , Hyphomicrobiaceae/enzymology , Hyphomicrobiaceae/metabolism , Lasers , Models, Molecular , Oxidation-Reduction/radiation effects , Pheophytins/metabolism , Photosynthetic Reaction Center Complex Proteins/radiation effects , Protons , Ubiquinone/analogs & derivatives , Ubiquinone/metabolism , Vitamin K 2/metabolism
3.
Structure ; 25(9): 1461-1468.e2, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28781082

ABSTRACT

Serial protein crystallography was developed at X-ray free-electron lasers (XFELs) and is now also being applied at storage ring facilities. Robust strategies for the growth and optimization of microcrystals are needed to advance the field. Here we illustrate a generic strategy for recovering high-density homogeneous samples of microcrystals starting from conditions known to yield large (macro) crystals of the photosynthetic reaction center of Blastochloris viridis (RCvir). We first crushed these crystals prior to multiple rounds of microseeding. Each cycle of microseeding facilitated improvements in the RCvir serial femtosecond crystallography (SFX) structure from 3.3-Å to 2.4-Å resolution. This approach may allow known crystallization conditions for other proteins to be adapted to exploit novel scientific opportunities created by serial crystallography.


Subject(s)
Hyphomicrobiaceae/metabolism , Membrane Proteins/chemistry , Bacterial Proteins/chemistry , Crystallography, X-Ray , Hyphomicrobiaceae/chemistry , Models, Molecular , Photosynthesis , Protein Conformation
4.
Sci Rep ; 7(1): 4518, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28674417

ABSTRACT

Cytochrome c oxidase catalyses the reduction of molecular oxygen to water while the energy released in this process is used to pump protons across a biological membrane. Although an extremely well-studied biological system, the molecular mechanism of proton pumping by cytochrome c oxidase is still not understood. Here we report a method to produce large quantities of highly diffracting microcrystals of ba 3-type cytochrome c oxidase from Thermus thermophilus suitable for serial femtosecond crystallography. The room-temperature structure of cytochrome c oxidase is solved to 2.3 Å resolution from data collected at an X-ray Free Electron Laser. We find overall agreement with earlier X-ray structures solved from diffraction data collected at cryogenic temperature. Previous structures solved from synchrotron radiation data, however, have shown conflicting results regarding the identity of the active-site ligand. Our room-temperature structure, which is free from the effects of radiation damage, reveals that a single-oxygen species in the form of a water molecule or hydroxide ion is bound in the active site. Structural differences between the ba 3-type and aa 3-type cytochrome c oxidases around the proton-loading site are also described.


Subject(s)
Electron Transport Complex IV/chemistry , Models, Molecular , Protein Conformation , Temperature , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Ligands , Protein Binding , Protons , Structure-Activity Relationship , Thermus thermophilus/enzymology
5.
J Biol Chem ; 292(29): 12208-12219, 2017 07 21.
Article in English | MEDLINE | ID: mdl-28578314

ABSTRACT

Toxoplasma gondii is an obligate, intracellular eukaryotic apicomplexan protozoan parasite that can cause fetal damage and abortion in both animals and humans. Sphingolipids are essential and ubiquitous components of eukaryotic membranes that are both synthesized and scavenged by the Apicomplexa. Here we report the identification, isolation, and analyses of the Toxoplasma serine palmitoyltransferase, an enzyme catalyzing the first and rate-limiting step in sphingolipid biosynthesis: the condensation of serine and palmitoyl-CoA. In all eukaryotes analyzed to date, serine palmitoyltransferase is a highly conserved heterodimeric enzyme complex. However, biochemical and structural analyses demonstrated the apicomplexan orthologue to be a functional, homodimeric serine palmitoyltransferase localized to the endoplasmic reticulum. Furthermore, phylogenetic studies indicated that it was evolutionarily related to the prokaryotic serine palmitoyltransferase, identified in the Sphingomonadaceae as a soluble homodimeric enzyme. Therefore this enzyme, conserved throughout the Apicomplexa, is likely to have been obtained via lateral gene transfer from a prokaryote.


Subject(s)
Endoplasmic Reticulum/enzymology , Models, Molecular , Phylogeny , Protozoan Proteins/metabolism , Serine C-Palmitoyltransferase/metabolism , Toxoplasma/enzymology , Amino Acid Sequence , Catalytic Domain , Computational Biology , Conserved Sequence , Dimerization , Gene Deletion , Gene Duplication , Gene Transfer, Horizontal , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/isolation & purification , Isoenzymes/metabolism , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Conformation , Protein Interaction Domains and Motifs , Protein Transport , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/isolation & purification , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Serine C-Palmitoyltransferase/chemistry , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/isolation & purification , Structural Homology, Protein
6.
Science ; 354(6319): 1552-1557, 2016 12 23.
Article in English | MEDLINE | ID: mdl-28008064

ABSTRACT

Bacteriorhodopsin (bR) is a light-driven proton pump and a model membrane transport protein. We used time-resolved serial femtosecond crystallography at an x-ray free electron laser to visualize conformational changes in bR from nanoseconds to milliseconds following photoactivation. An initially twisted retinal chromophore displaces a conserved tryptophan residue of transmembrane helix F on the cytoplasmic side of the protein while dislodging a key water molecule on the extracellular side. The resulting cascade of structural changes throughout the protein shows how motions are choreographed as bR transports protons uphill against a transmembrane concentration gradient.


Subject(s)
Bacteriorhodopsins/chemistry , Bacteriorhodopsins/ultrastructure , Imaging, Three-Dimensional , Crystallography , Cytoplasm/chemistry , Lasers , Motion Pictures , Protein Conformation, alpha-Helical , Protons , Retinaldehyde/chemistry , Spectrum Analysis
7.
Sci Rep ; 6: 35279, 2016 10 19.
Article in English | MEDLINE | ID: mdl-27756898

ABSTRACT

Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the room temperature crystal structure of the chromophore-binding domains of the Deinococcus radiodurans phytochrome at 2.1 Å resolution. The structure was obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron laser. We find overall good agreement compared to a crystal structure at 1.35 Å resolution derived from conventional crystallography at cryogenic temperatures, which we also report here. The thioether linkage between chromophore and protein is subject to positional ambiguity at the synchrotron, but is fully resolved with SFX. The study paves the way for time-resolved structural investigations of the phytochrome photocycle with time-resolved SFX.


Subject(s)
Crystallography, X-Ray , Deinococcus/chemistry , Phytochrome/chemistry , Protein Conformation , Crystallization , Temperature
8.
Nat Commun ; 7: 12314, 2016 08 22.
Article in English | MEDLINE | ID: mdl-27545823

ABSTRACT

Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within the crystal lattice is confirmed by time-resolved visible absorption spectroscopy. This study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.


Subject(s)
Bacteriorhodopsins/chemistry , Crystallography, X-Ray/methods , Lasers , Lipids/chemistry , Crystallography, X-Ray/instrumentation , Feasibility Studies , Protein Conformation , Synchrotrons , Time Factors , Viscosity , X-Ray Absorption Spectroscopy/instrumentation , X-Ray Absorption Spectroscopy/methods
9.
Biochim Biophys Acta ; 1850(3): 536-53, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24918316

ABSTRACT

BACKGROUND: Bacteriorhodopsin (bR) is the simplest known light driven proton pump and has been heavily studied using structural methods: eighty four X-ray diffraction, six electron diffraction and three NMR structures of bR are deposited within the protein data bank. Twenty one X-ray structures report light induced structural changes and changes induced by mutation, changes in pH, thermal annealing or X-ray induced photo-reduction have also been examined. SCOPE OF REVIEW: We argue that light-induced structural changes that are replicated across several studies by independent research groups are those most likely to represent what is happening in reality. We present both internal distance matrix analyses that sort deposited bR structures into hierarchal trees, and difference Fourier analysis of deposited X-ray diffraction data. MAJOR CONCLUSIONS: An internal distance matrix analysis separates most wild-type bR structures according to their different crystal forms, indicating how the protein's structure is influenced by crystallization conditions. A similar analysis clusters eleven studies of illuminated bR crystals as one branch of a hierarchal tree with reproducible movements of the extracellular portion of helix C towards helix G, and of the cytoplasmic portion of helix F away from helices A, B and G. All crystallographic data deposited for illuminated crystals show negative difference density on a water molecule (Wat402) that forms H-bonds to the retinal Schiff Base and two aspartate residues (Asp85, Asp212) in the bR resting state. Other recurring difference density features indicated reproducible side-chain, backbone and water molecule displacements. X-ray induced radiation damage also disorders Wat402 but acts via cleaving the head-groups of Asp85 and Asp212. GENERAL SIGNIFICANCE: A remarkable level of agreement exists when deposited structures and crystallographic observations are viewed as a whole. From this agreement a unified picture of the structural mechanism of light-induced proton pumping by bR emerges. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.


Subject(s)
Bacteriorhodopsins/chemistry , Light , Protein Conformation/radiation effects , Protein Structure, Secondary/radiation effects , Bacteriorhodopsins/classification , Bacteriorhodopsins/genetics , Crystallography, X-Ray , Models, Molecular , Phylogeny , X-Rays
10.
J Mol Biol ; 425(22): 4379-87, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23871685

ABSTRACT

The generality of acyl transfer from phospholipids to membrane-active peptides has been probed using liquid chromatography-mass spectrometry analysis of peptide-lipid mixtures. The peptides examined include melittin, magainin II, PGLa, LAK1, LAK3 and penetratin. Peptides were added to liposomes with membrane lipid compositions ranging from pure phosphatidylcholine (PC) to mixtures of PC with phosphatidylethanolamine, phosphatidylserine or phosphatidylglycerol. Experiments were typically conducted at pH7.4 at modest salt concentrations (90 mM NaCl). In favorable cases, lipidated peptides were further characterized by tandem mass spectrometry methods to determine the sites of acylation. Melittin and magainin II were the most reactive peptides, with significant acyl transfer detected under all conditions and membrane compositions. Both peptides were lipidated at the N-terminus by transfer from PC, phosphatidylethanolamine, phosphatidylserine or phosphatidylglycerol, as well as at internal sites: lysine for melittin; serine and lysine for magainin II. Acyl transfer could be detected within 3h of melittin addition to negatively charged membranes. The other peptides were less reactive, but for each peptide, acylation was found to occur in at least one of the conditions examined. The data demonstrate that acyl transfer is a generic process for peptides bound to membranes composed of diacylglycerophospholipids. Phospholipid membranes cannot therefore be considered as chemically inert toward peptides and by extension proteins.


Subject(s)
Cell Membrane/chemistry , Membrane Lipids/chemistry , Peptides/chemistry , Phospholipids/chemistry , Antimicrobial Cationic Peptides/analysis , Antimicrobial Cationic Peptides/chemistry , Cell Membrane/metabolism , Chromatography, Liquid , Magainins/analysis , Magainins/chemistry , Mass Spectrometry , Melitten/analysis , Melitten/chemistry , Membrane Lipids/analysis , Peptides/analysis , Phospholipids/analysis
11.
Org Biomol Chem ; 10(28): 5371-8, 2012 Jul 28.
Article in English | MEDLINE | ID: mdl-22407502

ABSTRACT

The innate reactivity of the peptide melittin (H-GIGAVLKVLTTGLPALISWIKRKRQQ-NH(2)) towards membrane lipids has been explored using LC-MS methods. The high sensitivity afforded by LC-MS analysis enabled acyl transfer to the peptide to be detected, within 4 h, from membranes composed of phosphocholines (PCs). Acyl transfer from PCs was also observed from mixtures of PC with phosphoserine (PS) or phosphoglycerol (PG). In the latter case, transfer from PG was also detected. The half-lives for melittin conversion varied between 24 h and 75 h, being fastest for POPC and slowest for DOPC/DMPG mixtures. The order of reactivity for amino groups on the peptide was N-terminus > K23 ≫ K21 > K7. Products arising from double-acylation of melittin were detected as minor components, together with a putative component derived from transesterification involving S18 of the peptide.


Subject(s)
Melitten/chemistry , Melitten/metabolism , Membrane Lipids/metabolism , Phospholipids/metabolism , Amino Acid Sequence , Chromatography, Liquid , Mass Spectrometry , Models, Molecular , Molecular Sequence Data , Phosphatidylcholines/metabolism , Phosphatidylglycerols/metabolism , Phosphatidylserines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL