Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 584(1): 192-201, 2008 Apr 14.
Article in English | MEDLINE | ID: mdl-18346728

ABSTRACT

The use of the thiazolidinedione insulin sensitizers rosiglitazone and pioglitazone for the treatment of type 2 diabetes mellitus in recent years has proven to be effective in helping patients resume normal glycemic control. However, their use is often associated with undesirable side effects including peripheral edema, congestive heart failure and weight gain. Here, we report the identification and characterization of a novel selective PPARgamma modulator, SPPARgammaM5 ((2S)-2-(2-chloro-5-{[3-(4-chlorophenoxy)-2-methyl-6-(trifluoromethoxy)-1H-indol-1-yl]methyl} phenoxy)propionic acid), which has notable insulin sensitizing properties and a superior tolerability profile to that of rosiglitazone. SPPARgammaM5 is a potent ligand of human PPARgamma with high selectivity versus PPARalpha or PPARdelta in receptor competitive binding assays. In cell-based transcriptional activation assays, SPPARgammaM5 was a potent partial agonist of human PPARgamma in comparison to the PPARgamma full agonist rosiglitazone. Compared to rosiglitazone or the PPARgamma full agonist COOH (2-(2-(4-phenoxy-2-propylphenoxy)ethyl)indole-5-acetic acid), SPPARgammaM5 induced an attenuated PPARgamma-regulated gene expression profile in fully differentiated 3T3-L1 adipocytes and white adipose tissue of chronically treated db/db mice. SPPARgammaM5 treatment also reduced the insulin resistance index by homeostasis model assessment (HOMA), suggesting an improvement in insulin resistance in these db/db mice. Treatment of obese Zucker rats with either rosiglitazone or SPPARgammaM5 resulted in an improvement in selected parameters that serve as surrogate indicators of insulin resistance and hyperlipidemia. However, unlike rosiglitazone, SPPARgammaM5 did not cause significant fluid retention or cardiac hypertrophy in these rats. Thus, compounds such as SPPARgammaM5 may offer beneficial effects on glycemic control with significantly attenuated adverse effects.


Subject(s)
Acetates/pharmacology , Cardiovascular Diseases/chemically induced , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Indoles/pharmacology , Insulin Resistance , PPAR gamma/drug effects , Propionates/pharmacology , Thiazolidinediones/pharmacology , 3T3-L1 Cells , Acetates/adverse effects , Acetates/metabolism , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Animals , COS Cells , Cardiomegaly/chemically induced , Cardiomegaly/metabolism , Cardiomegaly/physiopathology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Chlorocebus aethiops , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Partial Agonism , Gene Expression Profiling , Gene Expression Regulation/drug effects , Hemodilution , Humans , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/metabolism , Indoles/adverse effects , Indoles/metabolism , Insulin Resistance/genetics , Male , Mice , Mice, Inbred Strains , PPAR alpha/drug effects , PPAR alpha/metabolism , PPAR delta/drug effects , PPAR delta/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Propionates/adverse effects , Propionates/metabolism , Protein Binding , Rats , Rats, Zucker , Rosiglitazone , Thiazolidinediones/adverse effects , Thiazolidinediones/metabolism , Transcriptional Activation/drug effects , Transfection , Water-Electrolyte Balance/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...