Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Mob DNA ; 15(1): 10, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711146

ABSTRACT

BACKGROUND: The advancement of sequencing technologies results in the rapid release of hundreds of new genome assemblies a year providing unprecedented resources for the study of genome evolution. Within this context, the significance of in-depth analyses of repetitive elements, transposable elements (TEs) in particular, is increasingly recognized in understanding genome evolution. Despite the plethora of available bioinformatic tools for identifying and annotating TEs, the phylogenetic distance of the target species from a curated and classified database of repetitive element sequences constrains any automated annotation effort. Moreover, manual curation of raw repeat libraries is deemed essential due to the frequent incompleteness of automatically generated consensus sequences. RESULTS: Here, we present an example of a crowd-sourcing effort aimed at curating and annotating TE libraries of two non-model species built around a collaborative, peer-reviewed teaching process. Manual curation and classification are time-consuming processes that offer limited short-term academic rewards and are typically confined to a few research groups where methods are taught through hands-on experience. Crowd-sourcing efforts could therefore offer a significant opportunity to bridge the gap between learning the methods of curation effectively and empowering the scientific community with high-quality, reusable repeat libraries. CONCLUSIONS: The collaborative manual curation of TEs from two tardigrade species, for which there were no TE libraries available, resulted in the successful characterization of hundreds of new and diverse TEs in a reasonable time frame. Our crowd-sourcing setting can be used as a teaching reference guide for similar projects: A hidden treasure awaits discovery within non-model organisms.

2.
Mol Biol Evol ; 40(9)2023 09 01.
Article in English | MEDLINE | ID: mdl-37668300

ABSTRACT

Novel phenotypes are increasingly recognized to have evolved by co-option of conserved genes into new developmental contexts, yet the process by which co-opted genes modify existing developmental programs remains obscure. Here, we provide insight into this process by characterizing the role of co-opted doublesex in butterfly wing color pattern development. dsx is the master regulator of insect sex differentiation but has been co-opted to control the switch between discrete nonmimetic and mimetic patterns in Papilio alphenor and its relatives through the evolution of novel mimetic alleles. We found dynamic spatial and temporal expression pattern differences between mimetic and nonmimetic butterflies throughout wing development. A mimetic color pattern program is switched on by a pulse of dsx expression in early pupal development that causes acute and long-term differential gene expression, particularly in Wnt and Hedgehog signaling pathways. RNAi suggested opposing, novel roles for these pathways in mimetic pattern development. Importantly, Dsx co-option caused Engrailed, a primary target of Hedgehog signaling, to gain a novel expression domain early in pupal wing development that is propagated through mid-pupal development to specify novel mimetic patterns despite becoming decoupled from Dsx expression itself. Altogether, our findings provide multiple views into how co-opted genes can both cause and elicit changes to conserved networks and pathways to result in development of novel, adaptive phenotypes.


Subject(s)
Butterflies , Hedgehog Proteins , Animals , Butterflies/genetics , Alleles , Heart Rate , Phenotype
3.
Genes (Basel) ; 13(2)2022 01 30.
Article in English | MEDLINE | ID: mdl-35205320

ABSTRACT

New species form through the evolution of genetic barriers to gene flow between previously interbreeding populations. The understanding of how speciation proceeds is hampered by our inability to follow cases of incipient speciation through time. Comparative approaches examining different diverging taxa may offer limited inferences, unless they fulfill criteria that make the comparisons relevant. Here, we test for those criteria in a recent adaptive radiation of the Rhagoletis pomonella species group (RPSG) hypothesized to have diverged in sympatry via adaptation to different host fruits. We use a large-scale population genetic survey of 1568 flies across 33 populations to: (1) detect on-going hybridization, (2) determine whether the RPSG is derived from the same proximate ancestor, and (3) examine patterns of clustering and differentiation among sympatric populations. We find that divergence of each in-group RPSG taxon is occurring under current gene flow, that the derived members are nested within the large pool of genetic variation present in hawthorn-infesting populations of R. pomonella, and that sympatric population pairs differ markedly in their degree of genotypic clustering and differentiation across loci. We conclude that the RPSG provides a particularly robust opportunity to make direct comparisons to test hypotheses about how ecological speciation proceeds despite on-going gene flow.


Subject(s)
Tephritidae , Animals , Gene Flow , Genetic Speciation , Genetics, Population , Sympatry , Tephritidae/genetics
4.
Mol Ecol ; 31(15): 4031-4049, 2022 08.
Article in English | MEDLINE | ID: mdl-33786930

ABSTRACT

Divergent adaptation to new ecological opportunities can be an important factor initiating speciation. However, as niches are filled during adaptive radiations, trait divergence driving reproductive isolation between sister taxa may also result in trait convergence with more distantly related taxa, increasing the potential for reticulated gene flow across the radiation. Here, we demonstrate such a scenario in a recent adaptive radiation of Rhagoletis fruit flies, specialized on different host plants. Throughout this radiation, shifts to novel hosts are associated with changes in diapause life history timing, which act as "magic traits" generating allochronic reproductive isolation and facilitating speciation-with-gene-flow. Evidence from laboratory rearing experiments measuring adult emergence timing and genome-wide DNA-sequencing surveys supported allochronic speciation between summer-fruiting Vaccinium spp.-infesting Rhagoletis mendax and its hypothesized and undescribed sister taxon infesting autumn-fruiting sparkleberries. The sparkleberry fly and R. mendax were shown to be genetically discrete sister taxa, exhibiting no detectable gene flow and allochronically isolated by a 2-month average difference in emergence time corresponding to host availability. At sympatric sites across the southern USA, the later fruiting phenology of sparkleberries overlaps with that of flowering dogwood, the host of another more distantly related and undescribed Rhagoletis taxon. Laboratory emergence data confirmed broadly overlapping life history timing and genomic evidence supported on-going gene flow between sparkleberry and flowering dogwood flies. Thus, divergent phenological adaptation can drive the initiation of reproductive isolation, while also enhancing genetic exchange across broader adaptive radiations, potentially serving as a source of novel genotypic variation and accentuating further diversification.


Subject(s)
Diapause , Tephritidae , Animals , Gene Flow , Genetic Speciation , Hybridization, Genetic , Reproductive Isolation , Tephritidae/genetics
5.
J Evol Biol ; 35(1): 146-163, 2022 01.
Article in English | MEDLINE | ID: mdl-34670006

ABSTRACT

Adaptation to novel environments can result in unanticipated genomic responses to selection. Here, we illustrate how multifarious, correlational selection helps explain a counterintuitive pattern of genetic divergence between the recently derived apple- and ancestral hawthorn-infesting host races of Rhagoletis pomonella (Diptera: Tephritidae). The apple host race terminates diapause and emerges as adults earlier in the season than the hawthorn host race, to coincide with the earlier fruiting phenology of their apple hosts. However, alleles at many loci associated with later emergence paradoxically occur at higher frequencies in sympatric populations of the apple compared to the hawthorn race. We present genomic evidence that historical selection over geographically varying environmental gradients across North America generated genetic correlations between two life history traits, diapause intensity and diapause termination, in the hawthorn host race. Moreover, the loci associated with these life history traits are concentrated in genomic regions in high linkage disequilibrium (LD). These genetic correlations are antagonistic to contemporary selection on local apple host race populations that favours increased initial diapause depth and earlier, not later, diapause termination. Thus, the paradox of apple flies appears due, in part, to pleiotropy or linkage of alleles associated with later adult emergence and increased initial diapause intensity, the latter trait strongly selected for by the earlier phenology of apples. Our results demonstrate how understanding of multivariate trait combinations and the correlative nature of selective forces acting on them can improve predictions concerning adaptive evolution and help explain seemingly counterintuitive patterns of genetic diversity in nature.


Subject(s)
Crataegus , Diapause , Life History Traits , Tephritidae , Animals , Crataegus/genetics , Linkage Disequilibrium , Tephritidae/genetics
6.
Mol Ecol ; 31(10): 2935-2950, 2022 05.
Article in English | MEDLINE | ID: mdl-34455644

ABSTRACT

Endosymbiont-induced cytoplasmic incompatibility (CI) may play an important role in arthropod speciation. However, whether CI consistently becomes associated or coupled with other host-related forms of reproductive isolation (RI) to impede the transfer of endosymbionts between hybridizing populations and further the divergence process remains an open question. Here, we show that varying degrees of pre- and postmating RI exist among allopatric populations of two interbreeding cherry-infesting tephritid fruit flies (Rhagoletis cingulata and R. indifferens) across North America. These flies display allochronic and sexual isolation among populations, as well as unidirectional reductions in egg hatch in hybrid crosses involving southwestern USA males. All populations are infected by a Wolbachia strain, wCin2, whereas a second strain, wCin3, only co-infects flies from the southwest USA and Mexico. Strain wCin3 is associated with a unique mitochondrial DNA haplotype and unidirectional postmating RI, implicating the strain as the cause of CI. When coupled with nonendosymbiont RI barriers, we estimate the strength of CI associated with wCin3 would not prevent the strain from introgressing from infected southwestern to uninfected populations elsewhere in the USA if populations were to come into secondary contact and hybridize. In contrast, cytoplasmic-nuclear coupling may impede the transfer of wCin3 if Mexican and USA populations were to come into contact. We discuss our results in the context of the general paucity of examples demonstrating stable Wolbachia hybrid zones and whether the spread of Wolbachia among taxa can be constrained in natural hybrid zones long enough for the endosymbiont to participate in speciation.


Subject(s)
Tephritidae , Wolbachia , Animals , Cytoplasm/genetics , DNA, Mitochondrial/genetics , Drosophila/genetics , Male , Reproductive Isolation , Tephritidae/genetics , Wolbachia/genetics
7.
Biol Rev Camb Philos Soc ; 96(5): 1969-1988, 2021 10.
Article in English | MEDLINE | ID: mdl-34041840

ABSTRACT

A key to understanding life's great diversity is discerning how competing organisms divide limiting resources to coexist in diverse communities. While temporal resource partitioning has long been hypothesized to reduce the negative effects of interspecific competition, empirical evidence suggests that time may not often be an axis along which animal species routinely subdivide resources. Here, we present evidence to the contrary in the world's most biodiverse group of animals: insect parasites (parasitoids). Specifically, we conducted a meta-analysis of 64 studies from 41 publications to determine if temporal resource partitioning via variation in the timing of a key life-history trait, egg deposition (oviposition), mitigates interspecific competition between species pairs sharing the same insect host. When competing species were manipulated to oviposit at (or near) the same time in or on a single host in the laboratory, competition was common, and one species was typically inherently superior (i.e. survived to adulthood a greater proportion of the time). In most cases, however, the inferior competitor could gain a survivorship advantage by ovipositing earlier (or in a smaller number of cases later) into shared hosts. Moreover, this positive (or in a few cases negative) priority advantage gained by the inferior competitor increased as the interval between oviposition times became greater. The results from manipulative experiments were also correlated with patterns of life-history timing and demography in nature: the more inherently competitively inferior a species was in the laboratory, the greater the interval between oviposition times of taxa in co-occurring populations. Additionally, the larger the interval between oviposition times of competing taxa, the more abundant the inferior species was in populations where competitors were known to coexist. Overall, our findings suggest that temporal resource partitioning via variation in oviposition timing may help to facilitate species coexistence and structures diverse insect communities by altering demographic measures of species success. We argue that the lack of evidence for a more prominent role of temporal resource partitioning in promoting species coexistence may reflect taxonomic differences, with a bias towards larger-sized animals. For smaller species like parasitic insects that are specialized to attack one or a group of closely related hosts, have short adult lifespans and discrete generation times, compete directly for limited resources in small, closed arenas and have life histories constrained by host phenology, temporal resource subdivision via variation in life history may play a critical role in allowing species to coexist by alleviating the negative effects of interspecific competition.


Subject(s)
Parasites , Animals , Ecology , Female , Host-Parasite Interactions , Insecta , Oviposition
8.
Ecol Evol ; 10(23): 12727-12744, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33304490

ABSTRACT

An important criterion for understanding speciation is the geographic context of population divergence. Three major modes of allopatric, parapatric, and sympatric speciation define the extent of spatial overlap and gene flow between diverging populations. However, mixed modes of speciation are also possible, whereby populations experience periods of allopatry, parapatry, and/or sympatry at different times as they diverge. Here, we report clinal patterns of variation for 21 nuclear-encoded microsatellites and a wing spot phenotype for cherry-infesting Rhagoletis (Diptera: Tephritidae) across North America consistent with these flies having initially diverged in parapatry followed by a period of allopatric differentiation in the early Holocene. However, mitochondrial DNA (mtDNA) displays a different pattern; cherry flies at the ends of the clines in the eastern USA and Pacific Northwest share identical haplotypes, while centrally located populations in the southwestern USA and Mexico possess a different haplotype. We hypothesize that the mitochondrial difference could be due to lineage sorting but more likely reflects a selective sweep of a favorable mtDNA variant or the spread of an endosymbiont. The estimated divergence time for mtDNA suggests possible past allopatry, secondary contact, and subsequent isolation between USA and Mexican fly populations initiated before the Wisconsin glaciation. Thus, the current genetics of cherry flies may involve different mixed modes of divergence occurring in different portions of the fly's range. We discuss the need for additional DNA sequencing and quantification of prezygotic and postzygotic reproductive isolation to verify the multiple mixed-mode hypothesis for cherry flies and draw parallels from other systems to assess the generality that speciation may commonly involve complex biogeographies of varying combinations of allopatric, parapatric, and sympatric divergence.

9.
Proc Natl Acad Sci U S A ; 117(38): 23960-23969, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32900926

ABSTRACT

Many organisms enter a dormant state in their life cycle to deal with predictable changes in environments over the course of a year. The timing of dormancy is therefore a key seasonal adaptation, and it evolves rapidly with changing environments. We tested the hypothesis that differences in the timing of seasonal activity are driven by differences in the rate of development during diapause in Rhagoletis pomonella, a fly specialized to feed on fruits of seasonally limited host plants. Transcriptomes from the central nervous system across a time series during diapause show consistent and progressive changes in transcripts participating in diverse developmental processes, despite a lack of gross morphological change. Moreover, population genomic analyses suggested that many genes of small effect enriched in developmental functional categories underlie variation in dormancy timing and overlap with gene sets associated with development rate in Drosophila melanogaster Our transcriptional data also suggested that a recent evolutionary shift from a seasonally late to a seasonally early host plant drove more rapid development during diapause in the early fly population. Moreover, genetic variants that diverged during the evolutionary shift were also enriched in putative cis regulatory regions of genes differentially expressed during diapause development. Overall, our data suggest polygenic variation in the rate of developmental progression during diapause contributes to the evolution of seasonality in R. pomonella We further discuss patterns that suggest hourglass-like developmental divergence early and late in diapause development and an important role for hub genes in the evolution of transcriptional divergence.


Subject(s)
Adaptation, Physiological/genetics , Diapause/genetics , Tephritidae , Transcriptome/genetics , Animals , Drosophila melanogaster/genetics , Genome-Wide Association Study , Seasons , Tephritidae/genetics , Tephritidae/growth & development
10.
Philos Trans R Soc Lond B Biol Sci ; 375(1806): 20190534, 2020 08 31.
Article in English | MEDLINE | ID: mdl-32654640

ABSTRACT

Studies assessing the predictability of evolution typically focus on short-term adaptation within populations or the repeatability of change among lineages. A missing consideration in speciation research is to determine whether natural selection predictably transforms standing genetic variation within populations into differences between species. Here, we test whether and how host-related selection on diapause timing associates with genome-wide differentiation during ecological speciation by comparing ancestral hawthorn and newly formed apple-infesting host races of Rhagoletis pomonella to their sibling species Rhagoletis mendax that attacks blueberries. The associations of 57 857 single nucleotide polymorphisms in a diapause genome-wide-association study (GWAS) on the hawthorn race strongly predicted the direction and magnitude of genomic divergence among the three fly populations at a field site in Fennville, MI, USA. The apple race and R. mendax show parallel changes in the frequencies of putative inversions on three chromosomes associated with the earlier fruiting times of apples and blueberries compared to hawthorns. A diapause GWAS on R. mendax revealed compensatory changes throughout the genome accounting for the earlier eclosion of blueberry, but not apple flies. Thus, a degree of predictability, although not complete, exists in the genomics of diapause across the ecological speciation continuum in Rhagoletis. The generality of this result is placed in the context of other similar systems. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.


Subject(s)
Genetic Speciation , Genome, Insect , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Reproductive Isolation , Tephritidae/physiology , Animals , Blueberry Plants , Crataegus , Food Chain , Herbivory , Malus , Michigan , Oviposition , Tephritidae/genetics
11.
Evolution ; 74(1): 156-168, 2020 01.
Article in English | MEDLINE | ID: mdl-31729753

ABSTRACT

Ecological speciation via host-shifting is often invoked as a mechanism for insect diversification, but the relative importance of this process is poorly understood. The shift of Rhagoletis pomonella in the 1850s from the native downy hawthorn, Crataegus mollis, to introduced apple, Malus pumila, is a classic example of sympatric host race formation, a hypothesized early stage of ecological speciation. The accidental human-mediated introduction of R. pomonella into the Pacific Northwest (PNW) in the late 1970s allows us to investigate how novel ecological opportunities may trigger divergent adaptation and host race formation on a rapid timescale. Since the introduction, the fly has spread in the PNW, where in addition to apple, it now infests native black hawthorn, Crataegus douglasii, and introduced ornamental hawthorn, Crataegus monogyna. We use this "natural experiment" to test for genetic differentiation among apple, black, and ornamental hawthorn flies co-occurring at three sympatric sites. We report evidence that populations of all three host-associations are genetically differentiated at the local level, indicating that partial reproductive isolation has evolved in this novel habitat. Our results suggest that conditions suitable for initiating host-associated divergence may be common in nature, allowing for the rapid evolution of new host races when ecological opportunity arises.


Subject(s)
Crataegus , Herbivory , Malus , Reproductive Isolation , Sympatry , Tephritidae/physiology , Animals , Introduced Species , Washington
12.
Insects ; 10(9)2019 Aug 29.
Article in English | MEDLINE | ID: mdl-31470668

ABSTRACT

Ascertaining the causes of adaptive radiation is central to understanding how new species arise and come to vary with their resources. The ecological theory posits adaptive radiation via divergent natural selection associated with novel resource use; an alternative suggests character displacement following speciation in allopatry and then secondary contact of reproductively isolated but ecologically similar species. Discriminating between hypotheses, therefore, requires the establishment of a key role for ecological diversification in initiating speciation versus a secondary role in facilitating co-existence. Here, we characterize patterns of genetic variation and postzygotic reproductive isolation for tephritid fruit flies in the Rhagoletis cingulata sibling species group to assess the significance of ecology, geography, and non-adaptive processes for their divergence. Our results support the ecological theory: no evidence for intrinsic postzygotic reproductive isolation was found between two populations of allopatric species, while nuclear-encoded microsatellites implied strong ecologically based reproductive isolation among sympatric species infesting different host plants. Analysis of mitochondrial DNA suggested, however, that cytoplasmic-related reproductive isolation may also exist between two geographically isolated populations within R cingulata. Thus, ecology associated with sympatric host shifts and cytoplasmic effects possibly associated with an endosymbiont may be the key initial drivers of the radiation of the R. cingulata group.

13.
Proc Natl Acad Sci U S A ; 116(40): 20015-20024, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31506352

ABSTRACT

The small cabbage white butterfly, Pieris rapae, is a major agricultural pest of cruciferous crops and has been introduced to every continent except South America and Antarctica as a result of human activities. In an effort to reconstruct the near-global invasion history of P. rapae, we developed a citizen science project, the "Pieris Project," and successfully amassed thousands of specimens from 32 countries worldwide. We then generated and analyzed nuclear (double-digest restriction site-associated DNA fragment procedure [ddRAD]) and mitochondrial DNA sequence data for these samples to reconstruct and compare different global invasion history scenarios. Our results bolster historical accounts of the global spread and timing of P. rapae introductions. We provide molecular evidence supporting the hypothesis that the ongoing divergence of the European and Asian subspecies of P. rapae (∼1,200 y B.P.) coincides with the diversification of brassicaceous crops and the development of human trade routes such as the Silk Route (Silk Road). The further spread of P. rapae over the last ∼160 y was facilitated by human movement and trade, resulting in an almost linear series of at least 4 founding events, with each introduced population going through a severe bottleneck and serving as the source for the next introduction. Management efforts of this agricultural pest may need to consider the current existence of multiple genetically distinct populations. Finally, the international success of the Pieris Project demonstrates the power of the public to aid scientists in collections-based research addressing important questions in invasion biology, and in ecology and evolutionary biology more broadly.


Subject(s)
Agriculture , Butterflies/classification , Butterflies/genetics , Citizen Science , Genomics , Introduced Species , Animals , DNA, Mitochondrial , Genetic Variation , Genetics, Population , Genomics/methods , Haplotypes , Population Dynamics
14.
Curr Opin Insect Sci ; 31: 84-92, 2019 02.
Article in English | MEDLINE | ID: mdl-31109679

ABSTRACT

Darwin recognized species as discontinuous, yet considered them to be formed by an incremental process of natural selection. Recent theoretical work on 'genome-wide congealing' is bridging this gap between the gradualism of divergent selection and rapid genome-wide divergence, particularly during ecological speciation-with-gene-flow. Host races and species of phytophagous insects, displaying a spectrum of divergence and gene flow among member taxa, provide model systems for testing predicted non-linear transitions from 'genic' divergence at a few uncoupled loci to 'genomic' divergence with genome-wide coupling of selected loci and strong reproductive isolation. Integrating across natural history, genomics, and evolutionary theory, emerging research suggests a tipping point from 'genic' to 'genomic' divergence between host races and species, during both sympatric speciation and secondary contact.


Subject(s)
Biological Evolution , Genetic Speciation , Insecta/genetics , Animals , Gene Flow , Genome, Insect , Reproductive Isolation
15.
Ecol Evol ; 9(1): 393-409, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30680122

ABSTRACT

Taxa harboring high levels of standing variation may be more likely to adapt to rapid environmental shifts and experience ecological speciation. Here, we characterize geographic and host-related differentiation for 10,241 single nucleotide polymorphisms in Rhagoletis pomonella fruit flies to infer whether standing genetic variation in adult eclosion time in the ancestral hawthorn (Crataegus spp.)-infesting host race, as opposed to new mutations, contributed substantially to its recent shift to earlier fruiting apple (Malus domestica). Allele frequency differences associated with early vs. late eclosion time within each host race were significantly related to geographic genetic variation and host race differentiation across four sites, arrayed from north to south along a 430-km transect, where the host races co-occur in sympatry in the Midwest United States. Host fruiting phenology is clinal, with both apple and hawthorn trees fruiting earlier in the North and later in the South. Thus, we expected alleles associated with earlier eclosion to be at higher frequencies in northern populations. This pattern was observed in the hawthorn race across all four populations; however, allele frequency patterns in the apple race were more complex. Despite the generally earlier eclosion timing of apple flies and corresponding apple fruiting phenology, alleles on chromosomes 2 and 3 associated with earlier emergence were paradoxically at lower frequency in the apple than hawthorn host race across all four sympatric sites. However, loci on chromosome 1 did show higher frequencies of early eclosion-associated alleles in the apple than hawthorn host race at the two southern sites, potentially accounting for their earlier eclosion phenotype. Thus, although extensive clinal genetic variation in the ancestral hawthorn race exists and contributed to the host shift to apple, further study is needed to resolve details of how this standing variation was selected to generate earlier eclosing apple fly populations in the North.

16.
Methods Mol Biol ; 1858: 195-212, 2019.
Article in English | MEDLINE | ID: mdl-30414119

ABSTRACT

Intracellular bacteria are ubiquitous in the insect world, with perhaps the best-studied example being the alphaproteobacterium, Wolbachia. Like most endosymbionts, Wolbachia cannot be cultivated outside of its host cells, hindering traditional microbial characterization techniques. Furthermore, multiple Wolbachia strains can be present within a single host, and certain strains can be present in densities below the detection limit of current methods. To date, Wolbachia has most commonly been studied using polymerase chain reaction (PCR) amplification and Sanger DNA sequencing by targeting specific genes in the bacterium's genome. PCR amplification and Sanger sequencing of multiple Wolbachia strains requires analysis of individually cloned sequences, which is resource and labor intensive. To help mitigate these difficulties, we present a modified double digest restriction site associated DNA sequencing (ddRADseq) approach to target and sequence in parallel multiple genes by adding restriction enzyme recognition sites to gene-specific PCR primers. Adopting this strategy allows us to uniquely tag and sequence amplicons from multiple hosts simultaneously on an Illumina MiSeq platform. Our approach represents an efficient and cost-effective method to characterize multiple target genes in population surveys.


Subject(s)
Computational Biology/methods , Genome, Bacterial , High-Throughput Nucleotide Sequencing/methods , Insecta/microbiology , Symbiosis , Wolbachia/genetics , Animals , Bacterial Proteins/genetics , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Sequence Analysis, DNA/methods , Wolbachia/isolation & purification , Wolbachia/physiology
17.
Genes (Basel) ; 9(5)2018 May 18.
Article in English | MEDLINE | ID: mdl-29783692

ABSTRACT

A major goal of evolutionary biology is to understand how variation within populations gets partitioned into differences between reproductively isolated species. Here, we examine the degree to which diapause life history timing, a critical adaptation promoting population divergence, explains geographic and host-related genetic variation in ancestral hawthorn and recently derived apple-infesting races of Rhagoletis pomonella. Our strategy involved combining experiments on two different aspects of diapause (initial diapause intensity and adult eclosion time) with a geographic survey of genomic variation across four sites where apple and hawthorn flies co-occur from north to south in the Midwestern USA. The results demonstrated that the majority of the genome showing significant geographic and host-related variation can be accounted for by initial diapause intensity and eclosion time. Local genomic differences between sympatric apple and hawthorn flies were subsumed within broader geographic clines; allele frequency differences within the races across the Midwest were two to three-fold greater than those between the races in sympatry. As a result, sympatric apple and hawthorn populations displayed more limited genomic clustering compared to geographic populations within the races. The findings suggest that with reduced gene flow and increased selection on diapause equivalent to that seen between geographic sites, the host races may be recognized as different genotypic entities in sympatry, and perhaps species, a hypothesis requiring future genomic analysis of related sibling species to R. pomonella to test. Our findings concerning the way selection and geography interplay could be of broad significance for many cases of earlier stages of divergence-with-gene flow, including (1) where only modest increases in geographic isolation and the strength of selection may greatly impact genetic coupling and (2) the dynamics of how spatial and temporal standing variation is extracted by selection to generate differences between new and discrete units of biodiversity.

18.
Sci Rep ; 8(1): 3629, 2018 02 26.
Article in English | MEDLINE | ID: mdl-29483573

ABSTRACT

Social status is an important predictor of parasite risk in vertebrates. To date, general frameworks to explain status-related variation in parasitism have remained elusive. In this meta-analysis, we evaluated five hypotheses proposed to explain status-related variation in parasitism in male and female vertebrates by leveraging variation in hierarchy type, mating system, parasite transmission mode, and allostatic load to test associated predictions. Our meta-analyses span 66 analyses (26 studies) of male vertebrates (two orders and five classes), and 62 analyses (13 studies) of female vertebrates (four vertebrate orders). Contrary to the prevailing paradigm that low status is linked to poor health, we found that dominant animals typically faced higher parasite risk than subordinates. This pattern was especially well-supported in analyses of males versus females, in linear versus egalitarian hierarchies, in mating systems where dominance rank predicts mating effort, and for contact- and environmentally-transmitted parasites rather than vector-borne parasites. These findings supported the priority-of-access and tradeoffs hypotheses suggesting that variation in parasitism is driven by rank-associated differences in exposure to parasites and mating effort. Together, these results suggest that high parasite risk might sometimes be an unappreciated cost of high rank, and conversely, reduced parasite risk might be a benefit of social subordination.


Subject(s)
Vertebrates , Animals , Female , Hierarchy, Social , Male , Social Dominance
19.
J Econ Entomol ; 110(6): 2599-2608, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29029209

ABSTRACT

The apple maggot fly, Rhagoletis pomonella Walsh (Diptera: Tephritidae), is a serious quarantine pest in the apple-growing regions of central Washington and Oregon. The fly is believed to have been introduced into the Pacific Northwest via the transport of larval-infested apples near Portland, Oregon, within the last 40 yr. However, R. pomonella also attacks native black hawthorn, Crataegus douglasii Lindley (Rosales: Rosaceae), and introduced ornamental hawthorn, Crataegus monogyna Jacquin, in the region. It is, therefore, possible that R. pomonella was not introduced but has always been present on black hawthorn. If true, then the fly may have independently shifted from hawthorn onto apple in the Pacific Northwest within the last 40 yr after apples were introduced. Here, we test the introduction hypothesis through a microsatellite genetic survey of 10 R. pomonella sites in Washington and 5 in the eastern United States, as well as a comparison to patterns of genetic variation between populations of Rhagoletis cingulata Loew and Rhagoletis indifferens Curran, two sister species of cherry-infesting flies known to be native to the eastern and western United States, respectively. We report results based on genetic distance networks, patterns of allelic variation, and estimated times of population divergence that are consistent with the introduction hypothesis for R. pomonella. The results have important implications for R. pomonella management, suggesting that black hawthorn-infesting flies near commercial apple-growing regions of central Washington may harbor sufficient variation to utilize apple as an alternate host, urging careful monitoring, and possible removal of hawthorn trees near orchards.


Subject(s)
Genetic Variation , Herbivory , Tephritidae/genetics , Animals , Crataegus/growth & development , DNA, Mitochondrial/genetics , Genotype , Introduced Species , Malus/growth & development , Microsatellite Repeats , Tephritidae/physiology , Washington
20.
Mol Ecol ; 26(15): 3926-3942, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28500772

ABSTRACT

Speciation with gene flow may require adaptive divergence of multiple traits to generate strong ecologically based reproductive isolation. Extensive negative pleiotropy or physical linkage of genes in the wrong phase affecting these diverging traits may therefore hinder speciation, while genetic independence or "modularity" among phenotypic traits may reduce constraints and facilitate divergence. Here, we test whether the genetics underlying two components of diapause life history, initial diapause intensity and diapause termination timing, constrain differentiation between sympatric hawthorn and apple-infesting host races of the fly Rhagoletis pomonella through analysis of 10,256 SNPs measured via genotyping-by-sequencing (GBS). Loci genetically associated with diapause termination timing were mainly observed for SNPs mapping to chromosomes 1-3 in the genome, most notably for SNPs displaying higher levels of linkage disequilibrium (LD), likely due to inversions. In contrast, selection on initial diapause intensity affected loci on all five major chromosomes of the genome, specifically those showing low levels of LD. This lack of overlap in genetically associated loci suggests that the two diapause phenotypes are largely modular. On chromosome 2, however, intermediate level LD loci and a subgroup of high LD loci displayed significant negative relationships between initial diapause intensity and diapause termination time. These gene regions on chromosome 2 therefore affected both traits, while most regions were largely independent. Moreover, loci associated with both measured traits also tended to exhibit highly divergent allele frequencies between the host races. Thus, the presence of nonoverlapping genetic modules likely facilitates simultaneous, adaptive divergence for the measured life-history components.


Subject(s)
Diapause , Gene Flow , Genetic Speciation , Linkage Disequilibrium , Tephritidae/genetics , Animals , Chromosome Mapping , Genome, Insect , Genotype , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...