Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(24): 16869-16887, 2023 12 28.
Article in English | MEDLINE | ID: mdl-38088830

ABSTRACT

Corramycin 1 is a novel zwitterionic antibacterial peptide isolated from a culture of the myxobacterium Corallococcus coralloides. Though Corramycin displayed a narrow spectrum and modest MICs against sensitive bacteria, its ADMET and physchem profile as well as its high tolerability in mice along with an outstanding in vivo efficacy in an Escherichia coli septicemia mouse model were promising and prompted us to embark on an optimization program aiming at enlarging the spectrum and at increasing the antibacterial activities by modulating membrane permeability. Scanning the peptidic moiety by the Ala-scan strategy followed by key stabilization and introduction of groups such as a primary amine or siderophore allowed us to enlarge the spectrum and increase the overall developability profile. The optimized Corramycin 28 showed an improved mouse IV PK and a broader spectrum with high potency against key Gram-negative bacteria that translated into excellent efficacy in several in vivo mouse infection models.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Mice , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry , Gram-Negative Bacteria , Bacteria , Microbial Sensitivity Tests
2.
J Med Chem ; 58(1): 362-75, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25369539

ABSTRACT

The Aurora family of serine/threonine kinases is essential for mitosis. Their crucial role in cell cycle regulation and aberrant expression in a broad range of malignancies have been demonstrated and have prompted intensive search for small molecule Aurora inhibitors. Indeed, over 10 of them have reached the clinic as potential anticancer therapies. We report herein the discovery and optimization of a novel series of tricyclic molecules that has led to SAR156497, an exquisitely selective Aurora A, B, and C inhibitor with in vitro and in vivo efficacy. We also provide insights into its mode of binding to its target proteins, which could explain its selectivity.


Subject(s)
Antineoplastic Agents/pharmacology , Aurora Kinases/antagonists & inhibitors , Benzimidazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Quinolones/pharmacology , Small Molecule Libraries/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase A/chemistry , Aurora Kinase A/metabolism , Aurora Kinase B/antagonists & inhibitors , Aurora Kinase B/chemistry , Aurora Kinase B/metabolism , Aurora Kinase C/antagonists & inhibitors , Aurora Kinase C/chemistry , Aurora Kinase C/metabolism , Aurora Kinases/chemistry , Aurora Kinases/metabolism , Benzimidazoles/chemistry , Benzimidazoles/metabolism , Female , HCT116 Cells , Humans , Mice, SCID , Models, Chemical , Models, Molecular , Molecular Structure , Neoplasms/drug therapy , Neoplasms/pathology , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Structure, Tertiary , Quinolones/chemistry , Quinolones/metabolism , Sf9 Cells , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Xenograft Model Antitumor Assays
3.
J Med Chem ; 57(3): 903-20, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24387221

ABSTRACT

Compelling molecular biology publications have reported the implication of phosphoinositide kinase PI3Kß in PTEN-deficient cell line growth and proliferation. These findings supported a scientific rationale for the development of PI3Kß-specific inhibitors for the treatment of PTEN-deficient cancers. This paper describes the discovery of 2-[2-(2,3-dihydro-indol-1-yl)-2-oxo-ethyl]-6-morpholin-4-yl-3H-pyrimidin-4-one (7) and the optimization of this new series of active and selective pyrimidone indoline amide PI3Kß inhibitors. 2-[2-(2-Methyl-2,3-dihydro-indol-1-yl)-2-oxo-ethyl]-6-morpholin-4-yl-3H-pyrimidin-4-one (28), identified following a carefully designed methyl scan, displayed improved physicochemical and in vitro pharmacokinetic properties. Structural biology efforts enabled the acquisition of the first X-ray cocrystal structure of p110ß with the selective inhibitor compound 28 bound to the ATP site. The nonplanar binding mode described herein is consistent with observed structure-activity relationship for the series. Compound 28 demonstrated significant in vivo activity in a UACC-62 xenograft model in mice, warranting further preclinical investigation. Following successful development, compound 28 entered phase I/Ib clinical trial in patients with advanced cancer.


Subject(s)
Antineoplastic Agents/chemistry , Indoles/chemistry , Neoplasms/drug therapy , PTEN Phosphohydrolase/deficiency , Phosphoinositide-3 Kinase Inhibitors , Pyrimidinones/chemistry , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Biological Availability , Cell Line, Tumor , Cell Membrane Permeability , Crystallography, X-Ray , Dogs , Drug Screening Assays, Antitumor , Female , Heterografts , Humans , Indoles/pharmacokinetics , Indoles/pharmacology , Male , Mice , Mice, Inbred BALB C , Mice, SCID , Microsomes, Liver/metabolism , Molecular Conformation , Molecular Docking Simulation , Neoplasm Transplantation , Neoplasms/enzymology , PTEN Phosphohydrolase/genetics , Protein Binding , Pyrimidinones/pharmacokinetics , Pyrimidinones/pharmacology , Rats , Rats, Nude , Solubility , Stereoisomerism , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 22(20): 6381-4, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22981333

ABSTRACT

From a HTS campaign, a new series of pyrimidone anilides exemplified by compound 1 has been identified with good inhibitory activity for the PI3Kß isoform. The structure of compound 1 in PI3Kγ was solved revealing a binding mode in agreement with the SAR observed on PI3Kß. These compounds displayed inhibition in the nanomolar range in the biochemical assay and were also potent p-Akt inhibitors in a PTEN-deficient PC3 prostate cancer cell line. Optimization of in vitro pharmocokinetic properties led to compound 25 exhibiting 52% bioavailability in mice and target engagement in an acute PK/PD study.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Prostatic Neoplasms/drug therapy , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Anilides/chemistry , Anilides/pharmacokinetics , Anilides/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Crystallography, X-Ray , Female , Gene Deletion , Humans , Male , Mice , Mice, SCID , Models, Molecular , PTEN Phosphohydrolase/genetics , Prostate/cytology , Prostate/drug effects , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/genetics , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Pyrimidinones/pharmacokinetics , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...