Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 14(1): 4403, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37479684

ABSTRACT

The p53 tumor suppressor regulates multiple context-dependent tumor suppressive programs. Although p53 is mutated in ~90% of small cell lung cancer (SCLC) tumors, how p53 mediates tumor suppression in this context is unknown. Here, using a mouse model of SCLC in which endogenous p53 expression can be conditionally and temporally regulated, we show that SCLC tumors maintain a requirement for p53 inactivation. However, we identify tumor subtype heterogeneity between SCLC tumors such that p53 reactivation induces senescence in a subset of tumors, while in others, p53 induces necrosis. We pinpoint cyclophilins as critical determinants of a p53-induced transcriptional program that is specific to SCLC tumors and cell lines poised to undergo p53-mediated necrosis. Importantly, inhibition of cyclophilin isomerase activity, or genetic ablation of specific cyclophilin genes, suppresses p53-mediated necrosis by limiting p53 transcriptional output without impacting p53 chromatin binding. Our study demonstrates that intertumoral heterogeneity in SCLC influences the biological response to p53 restoration, describes a cyclophilin-dependent mechanism of p53-regulated cell death, and uncovers putative mechanisms for the treatment of this most-recalcitrant tumor type.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Cyclophilins/genetics , Small Cell Lung Carcinoma/genetics , Tumor Suppressor Protein p53/genetics , Necrosis/genetics , Lung Neoplasms/genetics
2.
Commun Biol ; 6(1): 255, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36899051

ABSTRACT

SETD2 is a tumor suppressor that is frequently inactivated in several cancer types. The mechanisms through which SETD2 inactivation promotes cancer are unclear, and whether targetable vulnerabilities exist in these tumors is unknown. Here we identify heightened mTORC1-associated gene expression programs and functionally higher levels of oxidative metabolism and protein synthesis as prominent consequences of Setd2 inactivation in KRAS-driven mouse models of lung adenocarcinoma. Blocking oxidative respiration and mTORC1 signaling abrogates the high rates of tumor cell proliferation and tumor growth specifically in SETD2-deficient tumors. Our data nominate SETD2 deficiency as a functional marker of sensitivity to clinically actionable therapeutics targeting oxidative respiration and mTORC1 signaling.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Animals , Mice , Adenocarcinoma of Lung/genetics , Genes, Tumor Suppressor , Lung Neoplasms/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Oxidative Stress , Histone-Lysine N-Methyltransferase/genetics
3.
Cell Metab ; 33(7): 1418-1432.e6, 2021 07 06.
Article in English | MEDLINE | ID: mdl-33761312

ABSTRACT

Associative learning allows animals to adapt their behavior in response to environmental cues. For example, sensory cues associated with food availability can trigger overconsumption even in sated animals. However, the neural mechanisms mediating cue-driven non-homeostatic feeding are poorly understood. To study this, we recently developed a behavioral task in which contextual cues increase feeding even in sated mice. Here, we show that an insular cortex to central amygdala circuit is necessary for conditioned overconsumption, but not for homeostatic feeding. This projection is marked by a population of glutamatergic nitric oxide synthase-1 (Nos1)-expressing neurons, which are specifically active during feeding bouts. Finally, we show that activation of insular cortex Nos1 neurons suppresses satiety signals in the central amygdala. The data, thus, indicate that the insular cortex provides top-down control of homeostatic circuits to promote overconsumption in response to learned cues.


Subject(s)
Feeding Behavior/physiology , Insular Cortex/physiology , Neurons/physiology , Nitric Oxide Synthase Type I/genetics , Overnutrition/etiology , Animals , Clozapine/analogs & derivatives , Clozapine/pharmacology , Conditioning, Psychological/drug effects , Conditioning, Psychological/physiology , Cues , Eating/drug effects , Eating/physiology , Feeding Behavior/drug effects , Female , Insular Cortex/drug effects , Insular Cortex/metabolism , Insular Cortex/pathology , Learning/drug effects , Learning/physiology , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Neurons/drug effects , Neurons/metabolism , Nitric Oxide Synthase Type I/metabolism , Overnutrition/genetics , Overnutrition/metabolism , Overnutrition/pathology
4.
Elife ; 92020 09 07.
Article in English | MEDLINE | ID: mdl-32894221

ABSTRACT

Stress has pleiotropic physiologic effects, but the neural circuits linking stress to these responses are not well understood. Here, we describe a novel population of lateral septum neurons expressing neurotensin (LSNts) in mice that are selectively tuned to specific types of stress. LSNts neurons increase their activity during active escape, responding to stress when flight is a viable option, but not when associated with freezing or immobility. Chemogenetic activation of LSNts neurons decreases food intake and body weight, without altering locomotion and anxiety. LSNts neurons co-express several molecules including Glp1r (glucagon-like peptide one receptor) and manipulations of Glp1r signaling in the LS recapitulates the behavioral effects of LSNts activation. Activation of LSNts terminals in the lateral hypothalamus (LH) also decreases food intake. These results show that LSNts neurons are selectively tuned to active escape stress and can reduce food consumption via effects on hypothalamic pathways.


Subject(s)
Eating/physiology , Escape Reaction/physiology , Limbic System/physiology , Neurons/physiology , Animals , Anxiety/physiopathology , Body Weight/physiology , Female , Locomotion/physiology , Male , Mice , Mice, Inbred C57BL , Transcriptome
5.
Mol Psychiatry ; 25(3): 666-679, 2020 03.
Article in English | MEDLINE | ID: mdl-29875477

ABSTRACT

Feeding is a complex motivated behavior controlled by a distributed neural network that processes sensory information to generate adaptive behavioral responses. Accordingly, studies using appetitive Pavlovian conditioning confirm that environmental cues that are associated with food availability can induce feeding even in satiated subjects. However, in mice, appetitive conditioning generally requires intensive training and thus can impede molecular studies that often require large numbers of animals. To address this, we developed and validated a simple and rapid context-induced feeding (Ctx-IF) task in which cues associated with food availability can later lead to increased food consumption in sated mice. We show that the associated increase in food consumption is driven by both positive and negative reinforcement and that spaced training is more effective than massed training. Ctx-IF can be completed in ~1 week and provides an opportunity to study the molecular mechanisms and circuitry underlying non-homeostatic eating. We have used this paradigm to map brain regions that are activated during Ctx-IF with cFos immunohistochemistry and found that the insular cortex, and other regions, are activated following exposure to cues denoting the availability of food. Finally, we show that inhibition of the insular cortex using GABA agonists impairs performance of the task. Our findings provide a novel assay in mice for defining the functional neuroanatomy of appetitive conditioning and identify specific brain regions that are activated during the development of learned behaviors that impact food consumption.


Subject(s)
Feeding Behavior/physiology , Reinforcement, Psychology , Satiation/physiology , Animals , Brain/physiology , Conditioning, Classical/physiology , Cues , Eating/physiology , Food , Learning/physiology , Male , Mice , Mice, Inbred C57BL , Motivation/physiology , Prefrontal Cortex/physiology
SELECTION OF CITATIONS
SEARCH DETAIL