Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pain ; 165(7): 1592-1604, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38293826

ABSTRACT

ABSTRACT: Visceral pain is a leading cause of morbidity in inflammatory bowel disease (IBD), contributing significantly to reduced quality of life. Currently available analgesics often lack efficacy or have intolerable side effects, driving the need for a more complete understanding of the mechanisms causing pain. Whole transcriptome gene expression analysis was performed by bulk RNA sequencing of colonic biopsies from patients with ulcerative colitis (UC) and Crohn's disease (CD) reporting abdominal pain and compared with noninflamed control biopsies. Potential pronociceptive mediators were identified based on gene upregulation in IBD biopsy tissue and cognate receptor expression in murine colonic sensory neurons. Pronociceptive activity of identified mediators was assessed in assays of sensory neuron and colonic afferent activity. RNA sequencing analysis highlighted a 7.6-fold increase in the expression of angiotensinogen transcripts, Agt , which encode the precursor to angiotensin II (Ang II), in samples from UC patients ( P = 3.2 × 10 -8 ). Consistent with the marked expression of the angiotensin AT 1 receptor in colonic sensory neurons, Ang II elicited an increase in intracellular Ca 2+ in capsaicin-sensitive, voltage-gated sodium channel subtype Na V 1.8-positive sensory neurons. Ang II also evoked action potential discharge in high-threshold colonic nociceptors. These effects were inhibited by the AT 1 receptor antagonist valsartan. Findings from our study identify AT 1 receptor-mediated colonic nociceptor activation as a novel pathway of visceral nociception in patients with UC. This work highlights the potential utility of angiotensin receptor blockers, such as valsartan, as treatments for pain in IBD.


Subject(s)
Angiotensin II , Gene Expression Profiling , Inflammatory Bowel Diseases , Humans , Animals , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/genetics , Mice , Male , Female , Colon/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/drug effects , Adult , Middle Aged , Mice, Inbred C57BL , Nociceptors/metabolism , Transcriptome
2.
JPEN J Parenter Enteral Nutr ; 48(2): 231-238, 2024 02.
Article in English | MEDLINE | ID: mdl-38062898

ABSTRACT

BACKGROUND: Achievement of enteral autonomy (EA) is the ultimate treatment goal in pediatric intestinal failure (IF). We aimed to assess predictors of EA in pediatric short bowel syndrome (SBS) and explore the impact of residual small bowel (SB) and large bowel (LB) length on EA. METHODS: A retrospective cohort study was performed on infants aged <12 months (n = 367, six centers) with SBS referred between 2010 and 2015. The cohort was stratified based on the achievement of EA. Statistical testing was completed using t-test, chi-square, Cox proportional hazards regression model, and Kaplan-Meier analysis. RESULTS: EA was achieved in 229 patients. In the multivariable analysis, the percentage of residual LB (hazard ratio [HR] = 1.02; 95% CI = 1.01-1.02) and SB (HR = 1.01; 95% CI = 1.01-1.02) length, presence of the ileocecal valve (HR = 2.02; 95% CI=1.41-2.88), and not coming from a high-volume transplantation center (HR = 2.42; 95% CI = 1.68-3.49) were positively associated with EA, whereas a negative association was seen with the presence of stoma at the time when shortest remnant was documented (HR = 0.72; 95% CI = 0.52-1.00). EA achievement was significantly different between the anatomical subgroups (log-rank test P < 0.001) with an EA rate of 80.4% in infants with ≥50% SB and LB (median time 209 days); 62.5% with ≥50% SB and <50% LB (397 days); 58.3% with <50% SB and ≥50% LB (1192 days), and 25.9% with <50% SB and LB. Necrotizing enterocolitis (NEC) was not associated with a better achievement of EA (NEC vs other etiologies: log-rank test P = 0.33). CONCLUSIONS: Overall, 62% of infants with IF secondary to SBS achieved EA over a mean time of follow-up of 2.3 years. A colon length of >50% can compensate for the loss of small bowel (<50%) and account for similar EA rates as those in children with residual SB > 50%.


Subject(s)
Intestinal Failure , Short Bowel Syndrome , Infant , Humans , Infant, Newborn , Child , Short Bowel Syndrome/therapy , Retrospective Studies , Parenteral Nutrition , Intestine, Small
3.
Front Nutr ; 9: 869399, 2022.
Article in English | MEDLINE | ID: mdl-35782951

ABSTRACT

It has been 57 years since the first intestinal transplant. An increased incidence of graft rejection has been described compared to other solid organ transplants due to high immunogenicity of the bowel, which in health allows the balance between of dietary antigen with defense against pathogens. Expanding clinical experience, knowledge of gastrointestinal physiology and immunology have progress post-transplant immunosuppressive drug regimens. Current regimes aim to find the window between prevention of rejection and the risk of infection (the leading cause of death) and malignancy. The ultimate aim is to achieve graft tolerance. In this review we discuss advances in mucosal immunology and technologies informing the development of new anti-rejection strategies with the hope of improved survival in the next generation of transplant recipients.

4.
Gut ; 71(5): 928-937, 2022 05.
Article in English | MEDLINE | ID: mdl-34083384

ABSTRACT

OBJECTIVE: Colonic enteroendocrine cells (EECs) store and release potent anorectic hormones that are key regulators of satiety. EECs express multiple nutrient sensing receptors, particularly for medium-chain fatty acids (MCFAs): GPR84 and FFAR4. Here we show a non-surgical approach with targeted colonic delivery of MCFA, which induces EEC and neuronal activation leading to anorectic effects. DESIGN: A randomised, double-blind, placebo-controlled, cross-over study was performed in obese adults given combined GPR84 and FFAR4 agonists in colonic release capsules before meals. We measured serum hormones, energy intake and appetite perception. Cell type, activation by agonists and hormone/serotonin release were determined in human colonic explants. Mouse colonic afferent nerve responses to nutrients/mediators were recorded electrophysiologically. RESULTS: Subjects receiving GPR84 and FFAR4 agonists had reduced overall calorific intake and increased postprandial levels of PYY versus placebo. Receptors including GPR84 and FFAR4 were coexpressed on human colonic EEC. Activation of GPR84 exclusively induced intracellular pERK, whereas FFAR4 selectively activated pCaMKII. Coactivation of GPR84 and FFAR4 induced both phosphoproteins, and superadditive release of GLP-1 and PYY. Nutrients and hormones convergently activated murine colonic afterent nerves via GLP-1, Y2 and 5-HT3 receptors. CONCLUSIONS: Colonic GPR84 and FFAR4 agonists reduce energy intake and increase postprandial PYY in obese adults. Human colonic EECs coexpress these receptors, which activate cells via parallel intracellular pathways and synergistically evoke hormone release. Further synergism occurs in sensory nerve responses to MCFA and EEC mediators. Thus, synergistic activation of colonic endocrine cells via nutrient receptors is an important target for metabolic regulation. TRAIL REGISTRATION NUMBER: NCT04292236.


Subject(s)
Appetite Depressants , Animals , Appetite , Appetite Depressants/metabolism , Appetite Depressants/pharmacology , Cross-Over Studies , Enteroendocrine Cells/metabolism , Glucagon-Like Peptide 1/metabolism , Humans , Mice , Nutrients , Obesity/metabolism , Receptors, G-Protein-Coupled/metabolism
5.
Pain ; 161(4): 773-786, 2020 04.
Article in English | MEDLINE | ID: mdl-31790010

ABSTRACT

The ability to sense visceral pain during appendicitis is diminished with age leading to delay in seeking health care and poorer clinical outcomes. To understand the mechanistic basis of this phenomenon, we examined visceral nociception in aged mouse and human tissue. Inflamed and noninflamed appendixes were collected from consenting patients undergoing surgery for the treatment of appendicitis or bowel cancer. Supernatants were generated by incubating samples in buffer and used to stimulate multiunit activity in intestinal preparations, or single-unit activity from teased fibres in colonic preparations, of young and old mice. Changes in afferent innervation with age were determined by measuring the density of calcitonin gene-related peptide-positive afferent fibres and by counting dorsal root ganglia back-labelled by injection of tracer dye into the wall of the colon. Finally, the effect of age on nociceptor function was studied in mouse and human colon. Afferent responses to appendicitis supernatants were greatly impaired in old mice. Further investigation revealed this was due to a marked reduction in the afferent innervation of the bowel and a substantial impairment in the ability of the remaining afferent fibres to transduce noxious stimuli. Translational studies in human tissue demonstrated a significant reduction in the multiunit but not the single-unit colonic mesenteric nerve response to capsaicin with age, indicative of a loss of nociceptor innervation. Our data demonstrate that anatomical and functional deficits in nociception occur with age, underpinning the atypical or silent presentation of appendicitis in the elderly.


Subject(s)
Appendicitis , Aged , Animals , Appendicitis/complications , Colon , Ganglia, Spinal , Humans , Mice , Neurons, Afferent , Nociception , Nociceptors , Visceral Pain
6.
Gut ; 64(4): 618-26, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25015642

ABSTRACT

OBJECTIVE: Inhibition of food intake and glucose homeostasis are both promoted when nutrients stimulate enteroendocrine cells (EEC) to release gut hormones. Several specific nutrient receptors may be located on EEC that respond to dietary sugars, amino acids and fatty acids. Bypass surgery for obesity and type II diabetes works by shunting nutrients to the distal gut, where it increases activation of nutrient receptors and mediator release, but cellular mechanisms of activation are largely unknown. We determined which nutrient receptors are expressed in which gut regions and in which cells in mouse and human, how they are associated with different types of EEC, how they are activated leading to hormone and 5-HT release. DESIGN AND RESULTS: mRNA expression of 17 nutrient receptors and EEC mediators was assessed by quantitative PCR and found throughout mouse and human gut epithelium. Many species similarities emerged, in particular the dense expression of several receptors in the distal gut. Immunolabelling showed specific colocalisation of receptors with EEC mediators PYY and GLP-1 (L-cells) or 5-HT (enterochromaffin cells). We exposed isolated proximal colonic mucosa to specific nutrients, which recruited signalling pathways within specific EEC extracellular receptor-regulated kinase (p-ERK) and calmodulin kinase II (pCAMKII), as shown by subsequent immunolabelling, and activated release of these mediators. Aromatic amino acids activated both pathways in mouse, but in humans they induced only pCAMKII, which was colocalised mainly with 5-HT expression. Activation was pertussis toxin-sensitive. Fatty acid (C12) potently activated p-ERK in human in all EEC types and evoked potent release of all three mediators. CONCLUSIONS: Specific nutrient receptors associate with distinct activation pathways within EEC. These may provide discrete, complementary pharmacological targets for intervention in obesity and type II diabetes.


Subject(s)
Enteroendocrine Cells/physiology , Food , Receptors, Cell Surface/physiology , Animals , Female , Humans , Mice , Mice, Inbred C57BL , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...