Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Mil Med Res ; 11(1): 27, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685116

ABSTRACT

BACKGROUND: The channel-forming protein Pannexin1 (Panx1) has been implicated in both human studies and animal models of chronic pain, but the underlying mechanisms remain incompletely understood. METHODS: Wild-type (WT, n = 24), global Panx1 KO (n = 24), neuron-specific Panx1 KO (n = 20), and glia-specific Panx1 KO (n = 20) mice were used in this study at Albert Einstein College of Medicine. The von Frey test was used to quantify pain sensitivity in these mice following complete Freund's adjuvant (CFA) injection (7, 14, and 21 d). The qRT-PCR was employed to measure mRNA levels of Panx1, Panx2, Panx3, Cx43, Calhm1, and ß-catenin. Laser scanning confocal microscopy imaging, Sholl analysis, and electrophysiology were utilized to evaluate the impact of Panx1 on neuronal excitability and morphology in Neuro2a and dorsal root ganglion neurons (DRGNs) in which Panx1 expression or function was manipulated. Ethidium bromide (EtBr) dye uptake assay and calcium imaging were employed to investigate the role of Panx1 in adenosine triphosphate (ATP) sensitivity. ß-galactosidase (ß-gal) staining was applied to determine the relative cellular expression levels of Panx1 in trigeminal ganglia (TG) and DRG of transgenic mice. RESULTS: Global or neuron-specific Panx1 deletion markedly decreased pain thresholds after CFA stimuli (7, 14, and 21 d; P < 0.01 vs. WT group), indicating that Panx1 was positively correlated with pain sensitivity. In Neuro2a, global Panx1 deletion dramatically reduced neurite extension and inward currents compared to the WT group (P < 0.05), revealing that Panx1 enhanced neurogenesis and excitability. Similarly, global Panx1 deletion significantly suppressed Wnt/ß-catenin dependent DRG neurogenesis following 5 d of nerve growth factor (NGF) treatment (P < 0.01 vs. WT group). Moreover, Panx1 channels enhanced DRG neuron response to ATP after CFA injection (P < 0.01 vs. Panx1 KO group). Furthermore, ATP release increased Ca2+ responses in DRGNs and satellite glial cells surrounding them following 7 d of CFA treatment (P < 0.01 vs. Panx1 KO group), suggesting that Panx1 in glia also impacts exaggerated neuronal excitability. Interestingly, neuron-specific Panx1 deletion was found to markedly reduce differentiation in cultured DRGNs, as evidenced by stunted neurite outgrowth (P < 0.05 vs. Panx1 KO group; P < 0.01 vs. WT group or GFAP-Cre group), blunted activation of Wnt/ß-catenin signaling (P < 0.01 vs. WT, Panx1 KO and GFAP-Cre groups), and diminished cell excitability (P < 0.01 vs. GFAP-Cre group) and response to ATP stimulation (P < 0.01 vs. WT group). Analysis of ß-gal staining showed that cellular expression levels of Panx1 in neurons are significantly higher (2.5-fold increase) in the DRG than in the TG. CONCLUSIONS: The present study revealed that neuronal Panx1 is a prominent driver of peripheral sensitivity in the setting of inflammatory pain through cell-autonomous effects on neuronal excitability. This hyperexcitability dependence on neuronal Panx1 contrasts with inflammatory orofacial pain, where similar studies revealed a prominent role for glial Panx1. The apparent differences in Panx1 expression in neuronal and non-neuronal TG and DRG cells are likely responsible for the distinct impact of these cell types in the two pain models.


Subject(s)
Connexins , Nerve Tissue Proteins , Animals , Connexins/genetics , Mice , Nerve Tissue Proteins/genetics , Disease Models, Animal , Pain/physiopathology , Pain/etiology , Neurons/metabolism , Inflammation/physiopathology , Mice, Knockout , Male
2.
PLoS One ; 18(12): e0295710, 2023.
Article in English | MEDLINE | ID: mdl-38100403

ABSTRACT

Pannexins are ubiquitously expressed in human and mouse tissues. Pannexin 1 (Panx1), the most thoroughly characterized member of this family, forms plasmalemmal membrane channels permeable to relatively large molecules, such as ATP. Although human and mouse Panx1 amino acid sequences are conserved in the presently known regulatory sites involved in trafficking and modulation of the channel, differences are reported in the N- and C-termini of the protein, and the mechanisms of channel activation by different stimuli remain controversial. Here we used a neuroblastoma cell line to study the activation properties of endogenous mPanx1 and exogenously expressed hPanx1. Dye uptake and electrophysiological recordings revealed that in contrast to mouse Panx1, the human ortholog is insensitive to stimulation with high extracellular [K+] but responds similarly to activation of the purinergic P2X7 receptor. The two most frequent Panx1 polymorphisms found in the human population, Q5H (rs1138800) and E390D (rs74549886), exogenously expressed in Panx1-null N2a cells revealed that regarding P2X7 receptor mediated Panx1 activation, the Q5H mutant is a gain of function whereas the E390D mutant is a loss of function variant. Collectively, we demonstrate differences in the activation between human and mouse Panx1 orthologs and suggest that these differences may have translational implications for studies where Panx1 has been shown to have significant impact.


Subject(s)
Connexins , Neural Stem Cells , Humans , Adenosine Triphosphate/metabolism , Cell Line , Cell Membrane/metabolism , Connexins/genetics , Connexins/metabolism , Neural Stem Cells/metabolism
3.
iScience ; 26(5): 106669, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37182109

ABSTRACT

The ubiquitous volume-regulated anion channels (VRACs) facilitate cell volume control and contribute to many other physiological processes. Treatment with non-specific VRAC blockers or brain-specific deletion of the essential VRAC subunit LRRC8A is highly protective in rodent models of stroke. Here, we tested the widely accepted idea that the harmful effects of VRACs are mediated by release of the excitatory neurotransmitter glutamate. We produced conditional LRRC8A knockout either exclusively in astrocytes or in the majority of brain cells. Genetically modified mice were subjected to an experimental stroke (middle cerebral artery occlusion). The astrocytic LRRC8A knockout yielded no protection. Conversely, the brain-wide LRRC8A deletion strongly reduced cerebral infarction in both heterozygous (Het) and full KO mice. Yet, despite identical protection, Het mice had full swelling-activated glutamate release, whereas KO animals showed its virtual absence. These findings suggest that LRRC8A contributes to ischemic brain injury via a mechanism other than VRAC-mediated glutamate release.

4.
FASEB J ; 35(10): e21869, 2021 10.
Article in English | MEDLINE | ID: mdl-34469026

ABSTRACT

The leucine-rich repeat-containing family 8 member A (LRRC8A) is an essential subunit of the volume-regulated anion channel (VRAC). VRAC is critical for cell volume control, but its broader physiological functions remain under investigation. Recent studies in the field indicate that Lrrc8a disruption in the brain astrocytes reduces neuronal excitability, impairs synaptic plasticity and memory, and protects against cerebral ischemia. In the present work, we generated brain-wide conditional LRRC8A knockout mice (LRRC8A bKO) using NestinCre -driven Lrrc8aflox/flox excision in neurons, astrocytes, and oligodendroglia. LRRC8A bKO animals were born close to the expected Mendelian ratio and developed without overt histological abnormalities, but, surprisingly, all died between 5 and 9 weeks of age with a seizure phenotype, which was confirmed by video and EEG recordings. Brain slice electrophysiology detected changes in the excitability of pyramidal cells and modified GABAergic inputs in the hippocampal CA1 region of LRRC8A bKO. LRRC8A-null hippocampi showed increased immunoreactivity of the astrocytic marker GFAP, indicating reactive astrogliosis. We also found decreased whole-brain protein levels of the GABA transporter GAT-1, the glutamate transporter GLT-1, and the astrocytic enzyme glutamine synthetase. Complementary HPLC assays identified reduction in the tissue levels of the glutamate and GABA precursor glutamine. Together, these findings suggest that VRAC provides vital control of brain excitability in mouse adolescence. VRAC deletion leads to a lethal phenotype involving progressive astrogliosis and dysregulation of astrocytic uptake and supply of amino acid neurotransmitters and their precursors.


Subject(s)
Astrocytes/pathology , Gliosis/mortality , Glutamic Acid/metabolism , Membrane Proteins/physiology , Seizures/mortality , Animals , Astrocytes/metabolism , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/pathology , Female , Gliosis/etiology , Gliosis/pathology , Ion Transport , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Seizures/etiology , Seizures/pathology
5.
Cereb Cortex ; 29(8): 3482-3495, 2019 07 22.
Article in English | MEDLINE | ID: mdl-30192926

ABSTRACT

Intraventricular hemorrhage (IVH) is a common complication of prematurity in infants born at 23-28 weeks of gestation. Survivors exhibit impaired growth of the cerebral cortex and neurodevelopmental sequeale, but the underlying mechanism(s) are obscure. Previously, we have shown that neocortical neurogenesis continues until at least 28 gestational weeks. This renders the prematurely born infants vulnerable to impaired neurogenesis. Here, we hypothesized that neurogenesis is impaired by IVH, and that signaling through GSK3ß, a critical intracellular kinase regulated by Wnt and other pathways, mediates this effect. These hypotheses were tested observationally in autopsy specimens from premature infants, and experimentally in a premature rabbit IVH model. Significantly, in premature infants with IVH, the number of neurogenic cortical progenitor cells was reduced compared with infants without IVH, indicating acutely decreased neurogenesis. This finding was corroborated in the rabbit IVH model, which further demonstrated reduction of upper layer cortical neurons after longer survival. Both the acute reduction of neurogenic progenitors, and the subsequent decrease of upper layer neurons, were rescued by treatment with AR-A014418, a specific inhibitor of GSK3ß. Together, these results indicate that IVH impairs late stages of cortical neurogenesis, and suggest that treatment with GSK3ß inhibitors may enhance neurodevelopment in premature infants with IVH.


Subject(s)
Apoptosis/drug effects , Cerebral Intraventricular Hemorrhage/metabolism , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Thiazoles/pharmacology , Urea/analogs & derivatives , Animals , Blotting, Western , Case-Control Studies , Cell Count , Cell Proliferation , Cerebral Cortex , Cerebral Intraventricular Hemorrhage/pathology , Disease Models, Animal , Ependymoglial Cells/drug effects , Ependymoglial Cells/metabolism , Humans , Immunohistochemistry , Infant, Extremely Premature , Infant, Newborn , Ki-67 Antigen/metabolism , Lateral Ventricles , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , PAX6 Transcription Factor/metabolism , Phosphorylation , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Rabbits , Real-Time Polymerase Chain Reaction , Retinoblastoma Protein/metabolism , SOXB1 Transcription Factors/metabolism , T-Box Domain Proteins/metabolism , Urea/pharmacology , White Matter
6.
J Neurosci ; 38(34): 7378-7391, 2018 08 22.
Article in English | MEDLINE | ID: mdl-30037831

ABSTRACT

Development of cortical interneurons continues until the end of human pregnancy. Premature birth deprives the newborns from the supply of maternal estrogen and a secure intrauterine environment. Indeed, preterm infants suffer from neurobehavioral disorders. This can result from both preterm birth and associated postnatal complications, which might disrupt recruitment and maturation of cortical interneurons. We hypothesized that interneuron subtypes, including parvalbumin-positive (PV+), somatostatin-positive (SST+), calretinin-positive (CalR+), and neuropeptide Y-positive (NPY+) interneurons, were recruited in the upper and lower cortical layers in a distinct manner with advancing gestational age. In addition, preterm birth would disrupt the heterogeneity of cortical interneurons, which might be reversed by estrogen treatment. These hypotheses were tested by analyzing autopsy samples from premature infants and evaluating the effect of estrogen supplementation in prematurely delivered rabbits. The PV+ and CalR+ neurons were abundant, whereas SST+ and NPY+ neurons were few in cortical layers of preterm human infants. Premature birth of infants reduced the density of PV+ or GAD67+ neurons and increased SST+ interneurons in the upper cortical layers. Importantly, 17 ß-estradiol treatment in preterm rabbits increased the number of PV+ neurons in the upper cortical layers relative to controls at postnatal day 14 (P14) and P21 and transiently reduced SST population at P14. Moreover, protein and mRNA levels of Arx, a key regulator of cortical interneuron maturation and migration, were higher in estrogen-treated rabbits relative to controls. Therefore, deficits in PV+ and excess of SST+ neurons in premature newborns are ameliorated by estrogen replacement, which can be attributed to elevated Arx levels. Estrogen replacement might enhance neurodevelopmental outcomes in extremely preterm infants.SIGNIFICANCE STATEMENT Premature birth often leads to neurodevelopmental delays and behavioral disorders, which may be ascribed to disturbances in the development and maturation of cortical interneurons. Here, we show that preterm birth in humans is associated with reduced population of parvalbumin-positive (PV+) neurons and an excess of somatostatin-expressing interneurons in the cerebral cortex. More importantly, 17 ß-estradiol treatment increased the number of PV+ neurons in preterm-born rabbits, which appears to be mediated by an elevation in the expression of Arx transcription factor. Hence the present study highlights prematurity-induced reduction in PV+ neurons in human infants and reversal in their population by estrogen replacement in preterm rabbits. Because preterm birth drops plasma estrogen level 100-fold, estrogen replacement in extremely preterm infants might improve their developmental outcome and minimize neurobehavioral disorders.


Subject(s)
Cerebral Cortex/pathology , Estradiol/pharmacology , Infant, Premature, Diseases/pathology , Interneurons/drug effects , Animals , Animals, Newborn , Calbindin 2/analysis , Cell Count , Female , Gestational Age , Glutamate Decarboxylase/analysis , Humans , Infant, Newborn , Infant, Premature , Interneurons/chemistry , Interneurons/classification , Interneurons/physiology , Male , Nerve Tissue Proteins/analysis , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Neuropeptide Y/analysis , Parvalbumins/analysis , Rabbits , Somatostatin/analysis , Transcription Factors/biosynthesis , Transcription Factors/genetics
7.
Neurobiol Dis ; 118: 22-39, 2018 10.
Article in English | MEDLINE | ID: mdl-29940337

ABSTRACT

Intraventricular hemorrhage (IVH) in preterm infants results in reduced proliferation and maturation of oligodendrocyte progenitor cells (OPCs), and survivors exhibit reduced myelination and neurological deficits. Wnt signaling regulates OPC maturation and myelination in a context dependent manner. Herein, we hypothesized that the occurrence of IVH would downregulate Wnt signaling, and that activating Wnt signaling by GSK-3ß inhibition or Wnt3A recombinant human protein (rh-Wnt3A) treatment might promote maturation of OPCs, myelination of the white matter, and neurological recovery in premature rabbits with IVH. These hypotheses were tested in autopsy samples from preterm infants and in a rabbit model of IVH. Induction of IVH reduced expressions of activated ß-catenin, TCF-4, and Axin2 transcription factors in preterm newborns. Both AR-A014418 (ARA) and Wnt-3A treatment activated Wnt signaling. GSK-3ß inhibition by intramuscular ARA treatment accelerated maturation of OPCs, myelination, and neurological recovery in preterm rabbits with IVH compared to vehicle controls. In contrast, intracerebroventricular rh-Wnt3A treatment failed to enhance myelination and neurological function in rabbits with IVH. ARA treatment reduced microglia infiltration and IL1ß expression in rabbits with IVH relative to controls, whereas Wnt3A treatment elevated TNFα, IL1ß, and IL6 expression without affecting microglia density. GSK-3ß inhibition downregulated, while rh-Wnt3A treatment upregulated Notch signaling; and none of the two treatments affected the Sonic-Hedgehog pathway. The administration of ARA or rh-Wnt3A did not affect gliosis. The data suggest that GSK-3ß inhibition promoted myelination by suppressing inflammation and Notch signaling; and Wnt3A treatment failed to enhance myelination because of its pro-inflammatory activity and synergy with Notch signaling. GSK-3ß inhibitors might improve the neurological outcome of preterm infants with IVH.


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta/biosynthesis , Infant, Premature/metabolism , Nerve Fibers, Myelinated/metabolism , Wnt3A Protein/biosynthesis , Animals , Brain/drug effects , Female , Humans , Infant, Newborn , Male , Nerve Fibers, Myelinated/drug effects , Rabbits , Recombinant Proteins/biosynthesis , Thiazoles/pharmacology , Urea/analogs & derivatives , Urea/pharmacology
8.
J Neurosci ; 38(5): 1100-1113, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29246927

ABSTRACT

Many Preterm-born children suffer from neurobehavioral disorders. Premature birth terminates the hypoxic in utero environment and supply of maternal hormones. As the production of interneurons continues until the end of pregnancy, we hypothesized that premature birth would disrupt interneuron production and that restoration of the hypoxic milieu or estrogen treatment might reverse interneuron generation. To test these hypotheses, we compared interneuronal progenitors in the medial ganglionic eminences (MGEs), lateral ganglionic eminences (LGEs), and caudal ganglionic eminences (CGEs) between preterm-born [born on embryonic day (E) 29; examined on postnatal day (D) 3 and D7] and term-born (born on E32; examined on D0 and D4) rabbits at equivalent postconceptional ages. We found that both total and cycling Nkx2.1+, Dlx2+, and Sox2+ cells were more abundant in the MGEs of preterm rabbits at D3 compared with term rabbits at D0, but not in D7 preterm relative to D4 term pups. Total Nkx2.1+ progenitors were also more numerous in the LGEs of preterm pups at D3 compared with term rabbits at D0. Dlx2+ cells in CGEs were comparable between preterm and term pups. Simulation of hypoxia by dimethyloxalylglycine treatment did not affect the number of interneuronal progenitors. However, estrogen treatment reduced the density of total and proliferating Nkx2.1+ and Dlx2+ cells in the MGEs and enhanced Ascl1 transcription factor. Estrogen treatment also reduced Ki67, c-Myc, and phosphorylation of retinoblastoma protein, suggesting inhibition of the G1-to-S phase transition. Hence, preterm birth disrupts interneuron neurogenesis in the MGE and estrogen treatment reverses interneuron neurogenesis in preterm newborns by cell-cycle inhibition and elevation of Ascl1. We speculate that estrogen replacement might partially restore neurogenesis in human premature infants.SIGNIFICANCE STATEMENT Prematurity results in developmental delays and neurobehavioral disorders, which might be ascribed to disturbances in the development of cortical interneurons. Here, we show that preterm birth disrupts interneuron neurogenesis in the medial ganglionic eminence (MGE) and, more importantly, that estrogen treatment reverses this perturbation in the population of interneuron progenitors in the MGE. The estrogen seems to restore neurogenesis by inhibiting the cell cycle and elevating Ascl1 expression. As preterm birth causes plasma estrogen level to drop 100-fold, the estrogen replacement in preterm infants is physiological. We speculate that estrogen replacement might ameliorate disruption in production of interneurons in human premature infants.


Subject(s)
Animals, Newborn/physiology , Estrogens/therapeutic use , Interneurons/drug effects , Neurogenesis/drug effects , Animals , Female , Ganglia/cytology , Ganglia/growth & development , Ganglia/metabolism , Homeodomain Proteins/metabolism , Hypoxia, Brain/chemically induced , Hypoxia, Brain/pathology , Ki-67 Antigen/metabolism , Neural Stem Cells/metabolism , Pregnancy , Premature Birth , Proto-Oncogene Proteins c-myc/biosynthesis , Proto-Oncogene Proteins c-myc/genetics , Rabbits , SOXB1 Transcription Factors/metabolism , Thyroid Nuclear Factor 1/metabolism
9.
Glia ; 64(11): 1987-2004, 2016 11.
Article in English | MEDLINE | ID: mdl-27472419

ABSTRACT

Intraventricular hemorrhage (IVH) leads to reduced myelination and astrogliosis of the white matter in premature infants. No therapeutic strategy exists to minimize white matter injury in survivors with IVH. Epidermal growth factor (EGF) enhances myelination, astrogliosis, and neurologic recovery in animal models of white matter injury. Here, we hypothesized that recombinant human (rh) EGF treatment would enhance oligodendrocyte precursor cell (OPC) maturation, myelination, and neurological recovery in preterm rabbits with IVH. In addition, rhEGF would promote astrogliosis by inducing astroglial progenitor proliferation and GFAP transcription. We tested these hypotheses in a preterm rabbit model of IVH and evaluated autopsy samples from human preterm infants. We found that EGF and EGFR expression were more abundant in the ganglionic eminence relative to the cortical plate and white matter of human infants and that the development of IVH reduced EGF levels, but not EGFR expression. Accordingly, rhEGF treatment promoted proliferation and maturation of OPCs, preserved myelin in the white matter, and enhanced neurological recovery in rabbits with IVH. rhEGF treatment inhibited Notch signaling, which conceivably contributed to OPC maturation. rhEGF treatment contributed to astrogliosis by increasing astroglial proliferation and upregulating GFAP as well as Sox9 expression. Hence, IVH results in a decline in EGF expression; and rhEGF treatment preserves myelin, restores neurological recovery, and exacerbates astrogliosis by inducing proliferation of astrocytes and enhancing transcription of GFAP and Sox9 in pups with IVH. rhEGF treatment might improve the neurological outcome of premature infants with IVH. GLIA 2016;64:1987-2004.


Subject(s)
Astrocytes/drug effects , Cerebral Intraventricular Hemorrhage/complications , Cerebral Intraventricular Hemorrhage/pathology , Epidermal Growth Factor/pharmacology , Gliosis/etiology , Myelin Sheath/metabolism , Age Factors , Animals , Animals, Newborn , Astrocytes/ultrastructure , Brain/embryology , Brain/growth & development , Brain/pathology , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cerebral Intraventricular Hemorrhage/chemically induced , Disease Models, Animal , Embryo, Mammalian , Gene Expression Regulation/physiology , Glial Fibrillary Acidic Protein/metabolism , Humans , Infant, Newborn , Infant, Premature , Ki-67 Antigen/metabolism , Oligodendrocyte Transcription Factor 2/metabolism , Oligodendroglia/pathology , Oligodendroglia/ultrastructure , Rabbits , Signal Transduction/physiology
10.
J Neurosci ; 36(11): 3363-77, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26985043

ABSTRACT

Intraventricular hemorrhage (IVH) in preterm infants leads to cerebral inflammation, reduced myelination of the white matter, and neurological deficits. No therapeutic strategy exists against the IVH-induced white matter injury. AMPA-kainate receptor induced excitotoxicity contributes to oligodendrocyte precursor cell (OPC) damage and hypomyelination in both neonatal and adult models of brain injury. Here, we hypothesized that IVH damages white matter via AMPA receptor activation, and that AMPA-kainate receptor inhibition suppresses inflammation and restores OPC maturation, myelination, and neurologic recovery in preterm newborns with IVH. We tested these hypotheses in a rabbit model of glycerol-induced IVH and evaluated the expression of AMPA receptors in autopsy samples from human preterm infants. GluR1-GluR4 expressions were comparable between preterm humans and rabbits with and without IVH. However, GluR1 and GluR2 levels were significantly lower in the embryonic white matter and germinal matrix relative to the neocortex in both infants with and without IVH. Pharmacological blockade of AMPA-kainate receptors with systemic NBQX, or selective AMPA receptor inhibition by intramuscular perampanel restored myelination and neurologic recovery in rabbits with IVH. NBQX administration also reduced the population of apoptotic OPCs, levels of several cytokines (TNFα, IL-ß, IL-6, LIF), and the density of Iba1(+) microglia in pups with IVH. Additionally, NBQX treatment inhibited STAT-3 phosphorylation, but not astrogliosis or transcription factors regulating gliosis. Our data suggest that AMPA-kainate receptor inhibition alleviates OPC loss and IVH-induced inflammation and restores myelination and neurologic recovery in preterm rabbits with IVH. Therapeutic use of FDA-approved perampanel treatment might enhance neurologic outcome in premature infants with IVH. SIGNIFICANCE STATEMENT: Intraventricular hemorrhage (IVH) is a major complication of prematurity and a large number of survivors with IVH develop cerebral palsy and cognitive deficits. The development of IVH leads to inflammation of the periventricular white matter, apoptosis and arrested maturation of oligodendrocyte precursor cells, and hypomyelination. Here, we show that AMPA-kainate receptor inhibition by NBQX suppresses inflammation, attenuates apoptosis of oligodendrocyte precursor cells, and promotes myelination as well as clinical recovery in preterm rabbits with IVH. Importantly, AMPA-specific inhibition by the FDA-approved perampanel, which unlike NBQX has a low side-effect profile, also enhances myelination and neurological recovery in rabbits with IVH. Hence, the present study highlights the role of AMPA-kainate receptor in IVH-induced white matter injury and identifies a novel strategy of neuroprotection, which might improve the neurological outcome for premature infants with IVH.


Subject(s)
Brain/metabolism , Hemorrhage/complications , Nervous System Diseases/etiology , Nervous System Diseases/metabolism , Receptors, AMPA/metabolism , Recovery of Function/physiology , Animals , Animals, Newborn , Apoptosis/drug effects , Brain/drug effects , Brain/pathology , Brain/ultrastructure , Calcium Signaling/drug effects , Cerebral Ventricles/physiopathology , Cerebral Ventricles/ultrastructure , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Amino Acid Antagonists/therapeutic use , Female , Glycerol/toxicity , Hemorrhage/chemically induced , Hemorrhage/pathology , Humans , Leukoencephalopathies/drug therapy , Leukoencephalopathies/etiology , Male , Nervous System Diseases/drug therapy , Nitriles , Pregnancy , Pyridones/pharmacology , Pyridones/therapeutic use , Quinoxalines/pharmacology , Quinoxalines/therapeutic use , Rabbits , Receptors, AMPA/genetics , Recovery of Function/drug effects
11.
J Neurosci ; 36(3): 872-89, 2016 01 20.
Article in English | MEDLINE | ID: mdl-26791217

ABSTRACT

Intraventricular hemorrhage (IVH) in premature infants results in inflammation, arrested oligodendrocyte progenitor cell (OPC) maturation, and reduced myelination of the white matter. Hyaluronan (HA) inhibits OPC maturation and complexes with the heavy chain (HC) of glycoprotein inter-α-inhibitor to form pathological HA (HC-HA complex), which exacerbates inflammation. Therefore, we hypothesized that IVH would result in accumulation of HA, and that either degradation of HA by hyaluronidase treatment or elimination of HCs from pathological HA by HA oligosaccharide administration would restore OPC maturation, myelination, and neurological function in survivors with IVH. To test these hypotheses, we used the preterm rabbit model of glycerol-induced IVH and analyzed autopsy samples from premature infants. We found that total HA levels were comparable in both preterm rabbit pups and human infants with and without IVH, but HA receptors--CD44, TLR2, TLR4--were elevated in the forebrain of both humans and rabbits with IVH. Hyaluronidase treatment of rabbits with IVH reduced CD44 and TLR4 expression, proinflammatory cytokine levels, and microglia infiltration. It also promoted OPC maturation, myelination, and neurological recovery. HC-HA and tumor necrosis factor-stimulated gene-6 were elevated in newborns with IVH; and depletion of HC-HA levels by HA oligosaccharide treatment reduced inflammation and enhanced myelination and neurological recovery in rabbits with IVH. Hence, hyaluronidase or HA oligosaccharide treatment represses inflammation, promotes OPC maturation, and restores myelination and neurological function in rabbits with IVH. These therapeutic strategies might improve the neurological outcome of premature infants with IVH. Significance statement: Approximately 12,000 premature infants develop IVH every year in the United States, and a large number of survivors with IVH develop cerebral palsy and cognitive deficits. The onset of IVH induces inflammation of the periventricular white matter, which results in arrested maturation of OPCs and myelination failure. HA is a major component of the extracellular matrix of the brain, which regulates inflammation through CD44 and TLR2/4 receptors. Here, we show two mechanism-based strategies that effectively enhanced myelination and neurological recovery in preterm rabbit model of IVH. First, degrading HA by hyaluronidase treatment reduced CD44 and TLR4 expression, proinflammatory cytokines, and microglial infiltration, as well as promoted oligodendrocyte maturation and myelination. Second, intraventricular injection of HA oligosaccharide reduced inflammation and enhanced myelination, conceivably by depleting HC-HA levels.


Subject(s)
Cerebral Hemorrhage/metabolism , Cerebral Ventricles/metabolism , Hyaluronic Acid/biosynthesis , Hyaluronoglucosaminidase/biosynthesis , Oligosaccharides/biosynthesis , Recovery of Function/physiology , Animals , Animals, Newborn , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/pathology , Cerebral Ventricles/drug effects , Cerebral Ventricles/pathology , Female , Humans , Hyaluronic Acid/administration & dosage , Infant, Newborn , Injections, Intraventricular , Male , Oligosaccharides/administration & dosage , Pregnancy , Rabbits , Recovery of Function/drug effects
12.
Exp Neurol ; 263: 200-13, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25263581

ABSTRACT

Postnatal glucocorticoids (GCs) are widely used in the prevention of chronic lung disease in premature infants. Their pharmacologic use is associated with neurodevelopmental delay and cerebral palsy. However, the effect of GC dose and preparation (dexamethasone versus betamethasone) on short and long-term neurological outcomes remains undetermined, and the mechanisms of GC-induced brain injury are unclear. We hypothesized that postnatal GC would induce hypomyelination and motor impairment in a preparation- and dose-specific manner, and that GC receptor (GR) inhibition might restore myelination and neurological function in GC-treated animals. Additionally, GC-induced hypomyelination and neurological deficit might be transient. To test our hypotheses, we treated prematurely delivered rabbit pups with high (0.5mg/kg/day) or low (0.2mg/kg/day) doses of dexamethasone or betamethasone. Myelin basic protein (MBP), oligodendrocyte proliferation and maturation, astrocytes, transcriptomic profile, and neurobehavioral functions were evaluated. We found that high-dose GC treatment, but not low-dose, reduced MBP expression and impaired motor function at postnatal day 14. High-dose dexamethasone induced astrogliosis, betamethasone did not. Mifepristone, a GR antagonist, reversed dexamethasone-induced myelination, but not astrogliosis. Both GCs inhibited oligodendrocyte proliferation and maturation. Moreover, high-dose dexamethasone altered genes associated with myelination, cell-cycle, GR, and mitogen-activated protein kinase. Importantly, GC-induced hypomyelination, gliosis, and motor-deficit, observed at day 14, completely recovered by day 21. Hence, high-dose, but not low-dose, postnatal GC causes reversible reductions in myelination and motor functions. GC treatment induces hypomyelination by GR-dependent genomic mechanisms, but astrogliosis by non-genomic mechanisms. GC-induced motor impairment and neurodevelopmental delay might be transient and recover spontaneously in premature infants.


Subject(s)
Brain/drug effects , Glucocorticoids/adverse effects , Myelin Sheath/drug effects , Animals , Animals, Newborn , Betamethasone/administration & dosage , Betamethasone/adverse effects , Blotting, Western , Brain/pathology , Dexamethasone/administration & dosage , Dexamethasone/adverse effects , Disease Models, Animal , Dose-Response Relationship, Drug , Gliosis/chemically induced , Gliosis/pathology , Glucocorticoids/administration & dosage , Immunohistochemistry , In Situ Nick-End Labeling , Myelin Sheath/pathology , Rabbits , Real-Time Polymerase Chain Reaction , Receptors, Glucocorticoid/metabolism
13.
Free Radic Biol Med ; 77: 168-82, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25224033

ABSTRACT

The contribution of oxidative stress to ischemic brain damage is well established. Nevertheless, for unknown reasons, several clinically tested antioxidant therapies have failed to show benefits in human stroke. Based on our previous in vitro work, we hypothesized that the neuroprotective potency of antioxidants is related to their ability to limit the release of the excitotoxic amino acids glutamate and aspartate. We explored the effects of two antioxidants, tempol and edaravone, on amino acid release in the brain cortex, in a rat model of transient occlusion of the middle cerebral artery (MCAo). Amino acid levels were quantified using a microdialysis approach, with the probe positioned in the ischemic penumbra as verified by a laser Doppler technique. Two-hour MCAo triggered a dramatic increase in the levels of glutamate, aspartate, taurine, and alanine. Microdialysate delivery of 10mM tempol reduced the amino acid release by 60-80%, whereas matching levels of edaravone had no effect. In line with these data, an intracerebroventricular injection of tempol but not edaravone (500 nmol each, 15 min before MCAo) reduced infarction volumes by ~50% and improved neurobehavioral outcomes. In vitro assays showed that tempol was superior at removing superoxide anion, whereas edaravone was more potent at scavenging hydrogen peroxide, hydroxyl radical, and peroxynitrite. Overall, our data suggest that the neuroprotective properties of tempol are probably related to its ability to reduce tissue levels of the superoxide anion and pathological glutamate release and, in such a way, limit progression of brain infarction within ischemic penumbra. These new findings may be instrumental in developing new antioxidant therapies for treatment of stroke.


Subject(s)
Cyclic N-Oxides/pharmacology , Glutamic Acid/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Neuroprotective Agents/pharmacology , Alanine/metabolism , Animals , Antipyrine/analogs & derivatives , Antipyrine/chemistry , Antipyrine/pharmacology , Astrocytes/metabolism , Brain/drug effects , Brain/pathology , Cells, Cultured , Cyclic N-Oxides/chemistry , Drug Evaluation, Preclinical , Edaravone , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Male , Molecular Mimicry , Neuroprotective Agents/chemistry , Oxidative Stress , Rats, Sprague-Dawley , Spin Labels , Superoxides/metabolism , Synaptosomes/drug effects , Taurine/metabolism
14.
Mol Pharmacol ; 83(1): 22-32, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23012257

ABSTRACT

4-(2-Butyl-6,7-dichloro-2-cyclopentyl-indan-1-on-5-yl) oxobutyric acid (DCPIB) was identified as the selective blocker of volume-regulated anion channels (VRAC). VRAC are permeable to small inorganic and organic anions, including the excitatory neurotransmitter glutamate. In recent years DCPIB has been increasingly used for probing the physiologic and pathologic roles of VRAC and was found to potently suppress pathologic glutamate release in cerebral ischemia. Because ischemic glutamate release can be mediated by a plethora of mechanisms, in this study we explored the selectivity of DCPIB toward the majority of previously identified glutamate transporters and permeability pathways. l-[(3)H]glutamate, d-[(3)H]aspartate, and l-[(14)C]cystine were used to trace amino acid release and uptake. We found that in addition to its well-characterized effect on VRAC, DCPIB potently inhibited glutamate release via connexin hemichannels and glutamate uptake via the glutamate transporter GLT-1 in rat glial cells. In contrast, DCPIB had no direct effect on vesicular glutamate release from rat brain synaptosomes or the cystine/glutamate exchange in astrocytes. The compound did not affect the astrocytic glutamate transporter GLAST, nor did it block glutamate release via the P2X(7)/pannexin permeability pathway. The ability of DCPIB to directly block connexin hemichannels was confirmed using a gene-specific siRNA knockdown approach. Overall, our data demonstrate that DCPIB influences several glutamate transport pathways and that its effects on VRAC in vivo should be verified using additional pharmacological controls.


Subject(s)
Amino Acid Transport Systems/physiology , Astrocytes/drug effects , Cyclopentanes/pharmacology , Glutamic Acid/metabolism , Indans/pharmacology , Microglia/drug effects , Adenosine Triphosphate/pharmacology , Amino Acid Transport System y+/antagonists & inhibitors , Amino Acid Transport System y+/physiology , Amino Acid Transport Systems/antagonists & inhibitors , Amino Acid Transport Systems, Acidic , Animals , Astrocytes/metabolism , Biological Transport , Cells, Cultured , Cerebral Cortex/cytology , Connexins/antagonists & inhibitors , Connexins/physiology , Excitatory Amino Acid Transporter 1/antagonists & inhibitors , Excitatory Amino Acid Transporter 1/physiology , Excitatory Amino Acid Transporter 2/antagonists & inhibitors , Excitatory Amino Acid Transporter 2/physiology , Microglia/metabolism , Permeability , Primary Cell Culture , Rats , Receptors, Purinergic P2X7/physiology , Synaptosomes/metabolism
15.
Antioxid Redox Signal ; 17(7): 992-1012, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22339371

ABSTRACT

SIGNIFICANCE: Nitric oxide (NO) plays diverse physiological roles in the central nervous system, where it modulates neuronal communication, regulates blood flow, and contributes to the innate immune responses. In a number of brain pathologies, the excessive production of NO also leads to the formation of reactive and toxic intermediates generically termed reactive nitrogen species (RNS). RNS cause irreversible or poorly reversible damage to brain cells. RECENT ADVANCES: Recent work in the field focused on the ability of NO and RNS to yield protein modifications, including the S-nitrosation of cysteine residues, which, in many instances, impact cellular functions and viability. CRITICAL ISSUES: The vast majority of neuropathological studies focus on the loss of cell viability, but nitrosative stress may also strongly impair the functions of neuronal processes: axonal projections and dendritic trees. The functional integrity of axons and dendrites critically depends on local metabolism and effective delivery of metabolic enzymes and organelles. Here, we summarize the existing literature describing the effects of nitrosative stress on the major pathways of energetic metabolism: glycolysis, tricarboxylic acid cycle, and mitochondrial respiration, with the emphasis on modifications of protein thiols. FUTURE DIRECTIONS: We propose that axons and dendrites are highly vulnerable to nitrosative stress because of their low glycolytic capacity and high dependence on timely delivery of metabolic enzymes and organelles from the cell body. Thus, supplementation with the end products of glycolysis, pyruvate or lactate, may help preserve metabolism in distal neuronal processes and protect or restore synaptic function in the ailing brain.


Subject(s)
Nitrosation/physiology , Animals , Central Nervous System/metabolism , Humans , Nitric Oxide/metabolism , Reactive Nitrogen Species/metabolism
16.
J Neurochem ; 118(1): 140-52, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21517854

ABSTRACT

In our previous work, we found that perfusion of the rat cerebral cortex with hypo-osmotic medium triggers massive release of the excitatory amino acid L-glutamate but decreases extracellular levels of L-glutamine (R. E. Haskew-Layton et al., PLoS ONE, 3: e3543). The release of glutamate was linked to activation of volume-regulated anion channels, whereas mechanism(s) responsible for alterations in extracellular glutamine remained unclear. When mannitol was added to the hypo-osmotic medium to reverse reductions in osmolarity, changes in microdialysate levels of glutamine were prevented, indicating an involvement of cellular swelling. As the main source of brain glutamine is astrocytic synthesis and export, we explored the impact of hypo-osmotic medium on glutamine synthesis and transport in rat primary astrocyte cultures. In astrocytes, a 40% reduction in medium osmolarity moderately stimulated the release of L-[(3) H]glutamine by ∼twofold and produced no changes in L-[(3) H]glutamine uptake. In comparison, hypo-osmotic medium stimulated the release of glutamate (traced with D-[(3) H]aspartate) by more than 20-fold. In whole-cell enzymatic assays, we discovered that hypo-osmotic medium caused a 20% inhibition of astrocytic conversion of L-[(3) H]glutamate into L-[(3) H]glutamine by glutamine synthetase. Using an HPLC assay, we further found a 35% reduction in intracellular levels of endogenous glutamine. Overall, our findings suggest that cellular swelling (i) inhibits astrocytic glutamine synthetase activity, and (ii) reduces substrate availability for this enzyme because of the activation of volume-regulated anion channels. These combined effects likely lead to reductions in astrocytic glutamine export in vivo and may partially explain occurrence of hyperexcitability and seizures in human hyponatremia.


Subject(s)
Astrocytes/metabolism , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Glutamic Acid/metabolism , Glutamine/metabolism , Animals , Animals, Newborn , Aspartic Acid/metabolism , Cells, Cultured , Cerebral Cortex/drug effects , Chromatography, High Pressure Liquid/methods , Dose-Response Relationship, Drug , Extracellular Fluid/metabolism , Glutamate-Ammonia Ligase/metabolism , Glutaminase/metabolism , Male , Microdialysis/methods , Models, Biological , Rats , Rats, Sprague-Dawley , Saline Solution, Hypertonic/pharmacology , Tritium/metabolism
18.
Neurosci Lett ; 450(2): 127-31, 2009 Jan 30.
Article in English | MEDLINE | ID: mdl-19038311

ABSTRACT

The role of free radicals in the pathogenesis of arterial stroke is well documented but not in venous stroke. The aim of the study was to investigate the possible role of free radicals in the pathogenesis of cerebral venous sinus thrombosis (CVST). For inducing CVST in Sprague-Dawley rats, a cranial window was made to expose the superior sagittal sinus (SSS). On the exposed sinus, a strip of filter paper soaked with 40% ferric chloride was applied. In the control rats 0.9% saline was used instead of ferric chloride. After induction of sinus thrombosis, clinical evaluations were done on days 1, 2 and 7 for neurological deficit, weight of thrombus and brain lesion volume. In neuronal-rich cell preparations flow cytometric estimations were done at different time points. In the study group on sequential follow-up, there was spontaneous recanalization of SSS as well as a significant decrease in brain lesion volume. An insignificant improvement in neurological deficit was also observed. In the controls, there was no neurological deficit or evidence of infarction. Neuronal free radical levels were significantly increased in the study group on day 1 compared to controls, but on follow-up free radicals levels decreased. It is concluded that the free radicals increase in the early stage of venous stroke and may be important in its pathogenesis.


Subject(s)
Free Radicals/metabolism , Neurons/metabolism , Sinus Thrombosis, Intracranial/pathology , Animals , Chlorides , Disease Models, Animal , Ferric Compounds , Flow Cytometry , Male , Neurologic Examination , Rats , Rats, Sprague-Dawley , Sinus Thrombosis, Intracranial/chemically induced , Time Factors
19.
J Neurosci Res ; 87(6): 1400-11, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19115407

ABSTRACT

Global ischemia was induced in gerbil by bilateral occlusion of the common carotid arteries for 5 min. Sodium ionophore monensin or sodium channel blocker tetrodotoxin (TTX) was administered at doses of 10 micorg/kg, i.p., 30 min before ischemia induction; the dose was repeated after 22 hr. Subsequently, brain infarct occurred, determined at 24 hr after occlusion. Large, well-demarcated infarcts were observed in both hemispheres, an important observation because it critically influences the interpretation of the data. Because nitric oxide (NO) production is thought to be related to ischemic neuronal damage, we examined increases in Ca(2+) influx, which lead to the activation of nitric oxide synthase (NOS). Then we evaluated the contributions of neuronal NOS, endothelial NOS, and inducible NOS to NO production in brain cryosections. The cytosolic release of apoptogenic molecules like cytochrome c and p53 were confirmed after 24 hr of reflow. TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling) labeling detected the apoptotic cells, which were confirmed in neuron-rich cell populations. After 24 hr, all the ischemic changes were amplified by monensin and significantly attenuated by TTX treatment. Additionally, the nesting behavior and histological outcomes were examined after 7 day of reflow. The neuronal damage in the hippocampal area and significant decrease in nesting scores were observed with monensin treatment and reduced by TTX pretreatment after day 7 of reflow. To our knowledge, this report is the first to highlight the involvement of the voltage-sensitive Na(+) channel in possibly regulating in part NO system and apoptosis in a cytochrome c-dependent manner in global ischemia in the gerbil, and thus warrants further investigation.


Subject(s)
Apoptosis , Brain Ischemia/pathology , Brain/pathology , Monensin/pharmacology , Neurons/physiology , Sodium Channels/metabolism , Tetrodotoxin/pharmacology , Animals , Brain/metabolism , Brain Ischemia/metabolism , Calcium/metabolism , Cytochromes c/metabolism , DNA Fragmentation , Endothelial Cells/physiology , Gerbillinae , Hippocampus/pathology , Hippocampus/physiopathology , In Situ Nick-End Labeling , Ionophores/pharmacology , Male , Nitric Oxide Synthase/metabolism , Sodium Channel Blockers/administration & dosage , Tumor Suppressor Protein p53/metabolism
20.
BMC Complement Altern Med ; 8: 55, 2008 Sep 30.
Article in English | MEDLINE | ID: mdl-18826584

ABSTRACT

BACKGROUND: Among the naturally occurring compounds, turmeric from the dried rhizome of the plant Curcuma longa has long been used extensively as a condiment and a household remedy all over Southeast Asia. Turmeric contains essential oil, yellow pigments (curcuminoids), starch and oleoresin. The present study was designed for investigating the neuroprotective efficacy and the time window for effective therapeutic use of Curcuma oil (C. oil). METHOD: In the present study, the effect of post ischemic treatment of C.oil after ischemia induced by occlusion of the middle cerebral artery in the rat was observed. C.oil (500 mg/kg body wt) was given 4 hrs post ischemia. The significant effect on lesion size as visualized by using diffusion-weighted magnetic resonance imaging and neuroscore was still evident when treatment was started 4 hours after insult. Animals were assessed for behavioral deficit scores after 5 and 24 hours of ischemia. Subsequently, the rats were sacrificed for evaluation of infarct and edema volumes and other parameters. RESULTS: C.oil ameliorated the ischemia induced neurological functional deficits and the infarct and edema volumes measured after 5 and 24 hrs of ischemia. After 24 hrs, immunohistochemical and Western blot analysis demonstrated that the expression of iNOS, cytochrome c and Bax/Bcl-2 were altered after the insult, and antagonized by treatment with C.oil. C.oil significantly reduced nitrosative stress, tended to correct the decreased mitochondrial membrane potential, and also affected caspase-3 activation finally apoptosis. CONCLUSION: Here we demonstrated that iNOS-derived NO produced during ischemic injury was crucial for the up-regulation of ischemic injury targets. C.oil down-regulates these targets this coincided with an increased survival rate of neurons.


Subject(s)
Apoptosis/drug effects , Curcuma/chemistry , Infarction, Middle Cerebral Artery/drug therapy , Intracranial Embolism/drug therapy , Neurons/drug effects , Neuroprotective Agents/administration & dosage , Plant Oils/administration & dosage , Animals , Behavior, Animal/drug effects , Blotting, Western , Caspase 3/metabolism , Enzyme Activation/drug effects , Infarction, Middle Cerebral Artery/metabolism , Intracranial Embolism/metabolism , Neurons/metabolism , Nitric Oxide/metabolism , Plant Oils/chemistry , Plant Oils/pharmacology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...