Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 23(6): 2353-2361, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35502841

ABSTRACT

Capillary rarefaction is a hallmark of right ventricle (RV) failure. Mesenchymal stromal cell (MSC)-based therapy offers a potential treatment due to its pro-angiogenic function. However, the impact of RV tissue mechanics on MSC behavior is unclear, especially when referring to RV end-diastolic stiffness and mechanical anisotropy. In this study, we assessed MSC behavior on electrospun scaffolds with varied stiffness (normal vs failing RV) and anisotropy (isotropic vs anisotropic). In individual MSCs, we observed the highest vascular endothelial growth factor (VEGF) production and total tube length in the failing, isotropic group (2.00 ± 0.37, 1.53 ± 0.24), which was greater than the normal, isotropic group (0.70 ± 0.15, 0.55 ± 0.07; p < 0.05). The presence of anisotropy led to trends of increased VEGF production on normal groups (0.75 ± 0.09 vs 1.20 ± 0.17), but this effect was absent on failing groups. Our findings reveal synergistic effects of RV-like stiffness and anisotropy on MSC pro-angiogenic function and may guide MSC-based therapies for heart failure.


Subject(s)
Mesenchymal Stem Cells , Vascular Endothelial Growth Factor A , Anisotropy , Heart Ventricles/metabolism , Mesenchymal Stem Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism
2.
Bioengineering (Basel) ; 8(12)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34940369

ABSTRACT

The interventricular septum contributes to the pumping function of both ventricles. However, unlike the ventricular wall, its mechanical behavior remains largely unknown. To fill the knowledge gap, this study aims to characterize the biaxial and transmural variation of the mechanical properties of the septum and compare it to the free walls of the left and right ventricles (LV/RV). Fresh hearts were obtained from healthy, adult sheep. The septal wall was sliced along the mid-line into two septal sides and compared to the epicardial layers of the LV- and RV-free walls. Biaxial tensile mechanical tests and constitutive modeling were performed to obtain the passive mechanical properties of the LV- and RV-side of the septum and ventricular walls. We found that both sides of the septum were significantly softer than the respective ventricular walls, and that the septum presented significantly less collagen than the ventricular walls. At low strains, we observed the symmetric distribution of the fiber orientations and a similar anisotropic behavior between the LV-side and RV-side of the septum, with a stiffer material property in the longitudinal direction, rather than the circumferential direction. At high strains, both sides showed isotropic behavior. Both septal sides had similar intrinsic elasticity, as evidenced by experimental data and constitutive modeling. These new findings offer important knowledge of the biomechanics of the septum wall, which may deepen the understanding of heart physiology.

SELECTION OF CITATIONS
SEARCH DETAIL
...