Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Eur J Immunol ; 54(4): e2350800, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38282083

ABSTRACT

Obesity-induced adipose tissue inflammation plays a critical role in the development of metabolic diseases. For example, NK1.1+ group 1 innate lymphoid cells (G1-ILCs) in adipose tissues are activated in the early stages of inflammation in response to a high-fat diet (HFD). In this study, we examined whether the composition of fatty acids affected adipose inflammatory responses induced by an HFD. Mice were fed a stearic acid (C18:0)-rich HFD (HFD-S) or a linoleic acid (C18:2)-rich HFD (HFD-L). HFD-L-fed mice showed significant obesity compared with HFD-S-fed mice. Visceral and subcutaneous fat pads were enlarged and contained more NK1.1+KLRG1+ cells, indicating that G1-ILCs were activated in HFD-L-fed mice. We examined early changes in adipose tissues during the first week of HFD intake, and found that mice fed HFD-L showed increased levels of NK1.1+CD11b+KLRG1+ cells in adipose tissues. In adipose tissue culture, addition of 4-hydroxynonenal, the most frequent product of lipid peroxidation derived from unsaturated fatty acids, induced NK1.1+CD11b+CD27- cells. We found that calreticulin, a ligand for the NK activating receptor, was induced on the surface of adipocytes after exposure to 4-hydroxynonenal or a 1-week feeding with HFD-L. Thus, excess fatty acid intake and the activation of G1-ILCs initiate and/or modify adipose inflammation.


Subject(s)
Aldehydes , Diet, High-Fat , Fatty Acids , Animals , Mice , Adipocytes , Adipose Tissue , Calreticulin/metabolism , Diet, High-Fat/adverse effects , Fatty Acids/metabolism , Immunity, Innate , Inflammation/metabolism , Lymphocytes/metabolism , Obesity
2.
Int Immunol ; 36(5): 223-240, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38262747

ABSTRACT

The gut microbiota plays a crucial role in maintaining epithelial barrier function. Although multiple studies have demonstrated the significance of dietary factors on the gut microbiota and mucosal barrier function, the impact of a purified diet, which has long been used in various animal experiments, on intestinal homeostasis remains to be elucidated. Here, we compared the impact of two different types of diets, a crude diet and an AIN-93G-formula purified diet, on epithelial integrity and the gut microbiota. Purified diet-fed mice exhibited shorter villi and crypt lengths and slower epithelial turnover, particularly in the ileum. In addition, antimicrobial products, including REG3γ, were substantially decreased in purified diet-fed mice. Purified diet feeding also suppressed α1,2-fucosylation on the epithelial surface. Furthermore, the purified diet induced metabolic rewiring to fatty acid oxidation and ketogenesis. 16S ribosomal RNA gene sequencing of the ileal contents and mucus layer revealed distinct gut microbiota compositions between the purified and crude diet-fed mice. Purified diet feeding reduced the abundance of segmented filamentous bacteria (SFB), which potently upregulate REG3γ and fucosyltransferase 2 (Fut2) by stimulating group 3 innate lymphoid cells (ILC3s) to produce IL-22. These observations illustrate that the intake of a crude diet secures epithelial barrier function by facilitating SFB colonization, whereas a purified diet insufficiently establishes the epithelial barrier, at least partly owing to the loss of SFB. Our data suggest that the influence of purified diets on the epithelial barrier integrity should be considered in experiments using purified diets.


Subject(s)
Gastrointestinal Microbiome , Mice , Animals , Immunity, Innate , Lymphocytes , Diet , Bacteria , Cell Proliferation
3.
J Biochem ; 173(5): 383-392, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-36689741

ABSTRACT

Jaw1/LRMP is a membrane protein that is localized to the endoplasmic reticulum and outer nuclear membrane. Previously, we revealed that Jaw1 functions to maintain nuclear shape by interacting with microtubules as a Klarsicht/ANC-1/Syne/homology (KASH) protein. The loss of several KASH proteins causes defects in the position and shape of the Golgi apparatus as well as the nucleus, but the effects of Jaw1 depletion on the Golgi apparatus were poorly understood. Here, we found that siRNA-mediated Jaw1 depletion causes Golgi fragmentation with disordered ribbon structure in the melanoma cell, accompanied by the change in the localization of the Golgi-derived microtubule network. Thus, we suggest that Jaw1 is a novel protein to maintain the Golgi ribbon structure, associated with the microtubule network.


Subject(s)
Cell Nucleus , Golgi Apparatus , Nuclear Envelope , Cell Nucleus/metabolism , Cytoskeleton/metabolism , Golgi Apparatus/metabolism , Microtubules , Nuclear Envelope/metabolism
4.
Carcinogenesis ; 41(7): 875-886, 2020 07 14.
Article in English | MEDLINE | ID: mdl-31738399

ABSTRACT

Glutathione S-transferase omega 2 (GSTO2), which belongs to the superfamily of GST omega class, lacks any appreciable GST activity. Although GSTO2 exhibits thioltransferase and glutathione dehydrogenase activities, its precise expression and physiological functions are still unclear. In the present study, we found that GSTO2 is exclusively expressed in the basal cell layer in Ki67-negative non-proliferative cells in the human esophageal mucosa. GSTO2 overexpression in esophageal squamous cell carcinoma (ESCC) cell lines inhibited cell growth and colony formation, and GSTO2-transfected cells formed smaller tumors in nude mice compared with mock-transfected cells. Interestingly, GSTO2 induction suppressed the expressions of E-cadherin and ß-catenin at the cell-cell contact site. We quantified the phosphorylation levels of key proteins of MAPK signaling pathway and identified phosphorylation of p38. Additionally, HSP27, a downstream molecule of p38, was accelerated in GSTO2-transfected cells, unlike in mock-transfected cells. When GSTO2-transfected cells were treated with a p38 inhibitor, the expression of ß-catenin and the membrane localization of E-cadherin was recovered. We next examined GSTO2 expression in 61 ESCC tissues using quantitative reverse transcription polymerase chain reaction and immunostaining. The results showed that GSTO2 mRNA and protein were significantly reduced in ESCC compared with normal tissues. When human ESCC cell lines were treated with 5-aza-2'-deoxycytidine, a DNA-methyltransferase inhibitor, GSTO2 transcription was induced, suggesting that aberrant hypermethylation is the cause of the down-regulated expression. Our results indicate that GSTO2 expression inhibits the membrane localization of E-cadherin, probably by modulation of the p38 signaling pathway. Down-regulation of GSTO2 by DNA hypermethylation contributes to the growth and progression of ESCC.


Subject(s)
Cadherins/genetics , Esophageal Squamous Cell Carcinoma/genetics , Glutathione Transferase/genetics , beta Catenin/genetics , Animals , Cell Line, Tumor , Cell Proliferation/genetics , DNA Methylation/genetics , Esophageal Squamous Cell Carcinoma/pathology , Gene Expression Regulation, Neoplastic/genetics , Heterografts , Humans , Mice , Signal Transduction/genetics
5.
Cell ; 178(5): 1072-1087.e14, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442401

ABSTRACT

Nutritional status potentially influences immune responses; however, how nutritional signals regulate cellular dynamics and functionality remains obscure. Herein, we report that temporary fasting drastically reduces the number of lymphocytes by ∼50% in Peyer's patches (PPs), the inductive site of the gut immune response. Subsequent refeeding seemingly restored the number of lymphocytes, but whose cellular composition was conspicuously altered. A large portion of germinal center and IgA+ B cells were lost via apoptosis during fasting. Meanwhile, naive B cells migrated from PPs to the bone marrow during fasting and then back to PPs during refeeding when stromal cells sensed nutritional signals and upregulated CXCL13 expression to recruit naive B cells. Furthermore, temporal fasting before oral immunization with ovalbumin abolished the induction of antigen-specific IgA, failed to induce oral tolerance, and eventually exacerbated food antigen-induced diarrhea. Thus, nutritional signals are critical in maintaining gut immune homeostasis.


Subject(s)
B-Lymphocytes/physiology , Immunity, Mucosal , Animals , Antigens/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Bone Marrow/immunology , Bone Marrow/metabolism , Chemokine CXCL13/genetics , Chemokine CXCL13/metabolism , Fasting , Gene Expression Regulation , Glycolysis , Immunoglobulin A/metabolism , Male , Mice , Mice, Inbred BALB C , Nutritional Status , Ovalbumin/immunology , Peyer's Patches/immunology , Peyer's Patches/metabolism , Peyer's Patches/pathology , Receptors, CXCR5/genetics , Receptors, CXCR5/metabolism , Signal Transduction , Stromal Cells/cytology , Stromal Cells/metabolism , TOR Serine-Threonine Kinases/metabolism
6.
PLoS One ; 13(11): e0207205, 2018.
Article in English | MEDLINE | ID: mdl-30419003

ABSTRACT

Sorting nexin 5 (SNX5), a member of sorting nexin family, plays an important role in membrane trafficking, including the retrograde trafficking of the cation independent mannose 6-phosphate receptor (CI-M6PR) and macropinocytosis. Using ESI-LCMS/MS analysis, we confirmed that SNX5 serine 226 is phosphorylated. Since SNX5 forms heterodimers with SNX1 or SNX2, we examined the effect of phosphorylation at S226 on the heterodimer formations. Wild-type and mutants of SNX5, in which S226 was mutated to a glutamic acid or an alanine, were expressed in 8505C cells. In pull-down assays using SNX5 as bait, only the S226E mutant failed to precipitate both SNX1 and SNX2. Confocal microscopy data indicated that the wild type and S226A mutant were colocalized with SNX1 and SNX2 in endosomes, but the S226E was not. SNX5 and SNX6 support each other's functions and are involved with CI-M6PR retrograde trafficking. In SNX5 and SNX6 double knockdown cells, CI-M6PR was dispersed and colocalized with the endosomal marker EEA1. In a rescue experiment using SNX5 mutants, the S226A rescued CI-M6PR localization, similar to control cells, but S226E did not. Furthermore, the decrease in the uptake of dextran by macropinocytosis in SNX5 knockdown cells was recovered by the expression of rescue-wild type or S226A mutant, but not by the rescue-S226E mutant. These observations indicate that SNX5 constitutive phosphorylation that mimics the mutant S226E decreases the active SNX5 in these cells. The phosphorylation of SNX5 regulates the dimerization with SNX1 or SNX2, and this suggests that it controls membrane trafficking and protein sorting.


Subject(s)
Biological Transport/physiology , Pinocytosis/physiology , Sorting Nexins/genetics , Sorting Nexins/metabolism , Amino Acid Sequence , Cell Line, Tumor , Dextrans/metabolism , Endosomes/metabolism , Humans , Mutation , Phosphorylation , Protein Multimerization , Receptor, IGF Type 2/metabolism
7.
J Biochem ; 164(4): 303-311, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29878215

ABSTRACT

Jaw1/LRMP is characterized as a Type II integral membrane protein that is localized to endoplasmic reticulum, however, its physiological functions have been poorly understood. An alignment of amino acid sequence of Jaw1 with Klarsicht/ANC-1/Syne/homology (KASH) proteins, outer nuclear membrane proteins, revealed that Jaw1 has a partial homology to the KASH domain. Here, we show that the function of Jaw1 is to maintain nuclear shape in mouse melanoma cell line. The siRNA-mediated knockdown of Jaw1 caused a severe defect in nuclear shape, and the defect was rescued by ectopic expression of siRNA-resistant Jaw1. Since co-immunoprecipitation assay indicates that Jaw1 interacts with Sad-1/UNC-84 (SUN) proteins that are inner nuclear proteins and microtubules, this study suggests that Jaw1 has a role in maintaining nuclear shape via interactions with SUN proteins and microtubules.


Subject(s)
Cell Nucleus/metabolism , Membrane Proteins/metabolism , Animals , Blotting, Western , Cell Shape , Membrane Proteins/chemistry , Mice , Microscopy, Electron, Transmission
9.
Medicine (Baltimore) ; 97(15): e0357, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29642180

ABSTRACT

We previously conducted transcriptome analysis of a paired specimen of normal and esophageal squamous cell carcinoma (ESCC) tissues and found that mRNA expression of cystatin A (CSTA), a member of the cystatin superfamily, was perturbed in tumors compared with that in the background mucosa. However, little is known about the significance of CSTA expression in ESCC.The mRNA expression of CSTA was evaluated by qRT-PCR using 28 paired frozen samples of tumor and nontumor mucosae. The protein expression of CSTA was evaluated by the immunostaining of formalin-fixed, paraffin-embedded sections of ESCC samples from 59 patients who underwent surgery, and its relationship with clinical features was analyzed.The mRNA expression of CSTA was significantly decreased in ESCC compared with that in matched normal mucosa (P < .0001). The protein expression of CSTA was limited in stratum granulosum and stratum spinosum but not in stratum basal in normal esophageal mucosa. It was reduced in all ESCC tissue samples compared with normal tissues; however, CSTA expression levels in tumors showed considerable variation. Of the 59 samples, 20 did not express CSTA, whereas 39 clearly expressed it. The expression of CSTA in tumors was significantly associated with pT classification (deeper tumor invasions) (P = .0118) and advanced TNM stages (P = .0497). In CSTA-positive tumor samples, CSTA-expressing cancer cells often expressed Ki67, a proliferation marker, which was in sharp contrast to normal mucosa, where Ki67-expressing cells were limited to the basal layer and did not express CSTA. Furthermore, CSTA expression was observed in all 22 lymph node metastases analyzed.Relatively high levels of CSTA expression in tumors were correlated with tumor progression and advanced cancer stage, including lymph node metastasis.


Subject(s)
Carcinoma, Squamous Cell , Cystatin A , Esophageal Mucosa , Esophageal Neoplasms , Aged , Biomarkers, Tumor , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cystatin A/genetics , Cystatin A/metabolism , Disease Progression , Esophageal Mucosa/metabolism , Esophageal Mucosa/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Japan , Ki-67 Antigen/analysis , Lymphatic Metastasis/genetics , Male , Middle Aged , Neoplasm Invasiveness , Neoplasm Staging , RNA, Messenger/analysis , Statistics as Topic
10.
Gen Thorac Cardiovasc Surg ; 66(6): 351-357, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29582368

ABSTRACT

OBJECTIVE: Our previous differential transcriptome analysis between a paired specimen of normal and esophageal squamous cell carcinoma (ESCC) tissues found aberrant expression of kallikrein-related peptidase 13 (KLK13) in tumors. In this study, we evaluated the expression of KLK13 in many ESCC cases in relation with clinical features, and the prognosis. METHODS: Eighty-eight ESCC cases were subjected to immunohistological staining for KLK13 and classified into KLK13-negative and KLK13-positive groups. Difference of clinical features and the prognosis between the groups was analyzed. RESULTS: In normal esophageal mucosa, KLK13 expression was evident but limited in the stratum granulosum in all cases. By contrast, only 27 of 88 ESCC samples showed KLK13 expression, whereas the remaining 61 tumors showed no KLK13 expression. The KLK13-positive group was significantly associated with pT classification (deeper tumor invasions; P = 0.0282), pN classification (lymph node metastasis; P = 0.0163), and advanced TNM stage (P = 0.0198). In KLK13-positive samples, KLK13-expressing cells often expressed Ki67, a proliferation marker, unlike normal mucosa, in which Ki67-expressing cells were limited to the basal layer and did not express KLK13. Compared with patients with KLK13-negative group, KLK13-positive group showed poorer postoperative prognosis. CONCLUSION: Relatively high levels of KLK13 expression in ESCC were associated with cell proliferation and correlated with tumor progression, advanced cancer stage, and poor prognosis.


Subject(s)
Carcinoma, Squamous Cell/genetics , DNA, Neoplasm/genetics , Esophageal Mucosa/metabolism , Esophageal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Kallikreins/genetics , Aged , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/metabolism , Esophageal Mucosa/pathology , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma , Female , Humans , Immunohistochemistry , Kallikreins/biosynthesis , Male , Neoplasm Staging , Prognosis , Real-Time Polymerase Chain Reaction
11.
Gut ; 67(2): 362-371, 2018 02.
Article in English | MEDLINE | ID: mdl-27789659

ABSTRACT

OBJECTIVE: The clinical significance of polymorphisms in the interleukin-28B gene encoding interferon (IFN)-λ3, which has antiviral effects, is known in chronic HCV but not in HBV infection. Thus, we measured IFN-λ3 levels in patients with HBV and investigated its clinical significance and association with nucleos(t)ide (NUC) analogue administration. DESIGN: Serum IFN-λ3 level was measured in 254 patients with HBV with varying clinical conditions using our own high sensitivity method. The resulting values were compared with various clinical variables. In addition, cell lines originating from various organs were cultured with NUCs, and the production of IFN-λ3 was evaluated. RESULTS: Higher serum IFN-λ3 levels were detected in the patients treated with nucleotide analogues (adefovir or tenofovir) compared with those treated with nucleoside analogues (lamivudine or entecavir). There were no other differences in the clinical background between the two groups. A rise in the serum IFN-λ3 levels was observed during additional administration of the nucleotide analogues. In vitro experiments showed that the nucleotide analogues directly and dose-dependently induced IFN-λ3 production only in colon cancer cells. Furthermore, the supernatant from cultured adefovir-treated colon cancer cells significantly induced IFN-stimulated genes (ISGs) and inhibited hepatitis B surface antigen (HBsAg) production in hepatoma cells, as compared with the supernatant from entecavir-treated cells. CONCLUSIONS: We discovered that the nucleotide analogues show an additional pharmacological effect by inducing IFN-λ3 production, which further induces ISGs and results in a reduction of HBsAg production. These findings provide novel insights for HBV treatment and suggest IFN-λ3 induction as a possible target.


Subject(s)
Antiviral Agents/therapeutic use , Carcinoma, Hepatocellular/blood , Hepatitis B, Chronic/blood , Hepatitis B, Chronic/drug therapy , Interleukins/blood , Liver Neoplasms/blood , Adenine/analogs & derivatives , Adenine/pharmacology , Adenine/therapeutic use , Adult , Aged , Aged, 80 and over , Antiviral Agents/pharmacology , Asymptomatic Infections , Culture Media, Conditioned/pharmacology , DNA, Viral/blood , Female , Gene Expression/drug effects , Genotype , Guanine/analogs & derivatives , Guanine/pharmacology , Guanine/therapeutic use , HT29 Cells , Hep G2 Cells , Hepatitis B Surface Antigens/metabolism , Hepatitis B virus/genetics , Humans , Interferons , Interleukins/pharmacology , Lamivudine/pharmacology , Lamivudine/therapeutic use , Liver Cirrhosis/blood , Male , Middle Aged , Organophosphonates/pharmacology , Organophosphonates/therapeutic use , Polymorphism, Genetic , Recombinant Proteins , Tenofovir/pharmacology , Tenofovir/therapeutic use , Up-Regulation/genetics , Young Adult
12.
Oncotarget ; 8(48): 84434-84448, 2017 Oct 13.
Article in English | MEDLINE | ID: mdl-29137437

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is associated with the accumulation of genetic and epigenetic changes in the background mucosa. Dysregulated DNA methylation is known to lead to the inactivation of tumor suppressor genes and the activation of oncogenes. To identify the genes whose expression is perturbed by abnormal DNA methylation in ESCC, integrative transcriptomics by serial analysis of gene expression (SAGE) and methylome sequencing by methyl-DNA immunoprecipitation (MeDIP) analysis were performed. We found 159 genes with significantly decreased expression in ESCC compared to that in noncancerous esophageal mucosa. MeDIP-seq analysis identified hypermethylation in the promoter region of 56 of these genes. Using surgically resected tissues of 40 cases, we confirmed that the paired-like homeodomain 1 (PITX1) gene was hypermethylated in ESCC compared to that in normal tissues (P < 0.0001) by pyrosequencing. PITX1 overexpression in ESCC cell lines inhibited cell growth and colony formation, whereas PITX1 knockdown accelerated cell growth. A PITX1-transfected ESCC cell line, KYSE30, formed smaller tumors in nude mice than in mock-transfected cells. Hypermethylation of PITX1 was associated with tumor depth (P = 0.0011) and advanced tumor stage (P = 0.0052) and predicted poor survival in ESCC (hazard ratio, 0.1538; 95% confidence interval, 0.03159-0.7488; P = 0.0169). In this study, we found a novel tumor suppressor gene of ESCC, PITX1, which is silenced by DNA hypermethylation. Downregulation of PITX1 contributes to the growth and progression of ESCC. Hypermethylation of the PITX1 in ESCC correlated with tumor progression and advanced stage cancer, and may predict a poor prognosis.

13.
J Clin Biochem Nutr ; 61(2): 100-107, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28955126

ABSTRACT

Fasting-refeeding in mice induces transient hyperproliferation of colonic epithelial cells, which is dependent on the lactate produced as a metabolite of commensal bacteria. We attempted to manipulate colonic epithelial cell turnover with intermittent fasting to prompt recovery from acute colitis. Acute colitis was induced in C57BL/6 mice by administration of dextran sulfate sodium in the drinking water for 5 days. From day 6, mice were fasted for 36 h and refed normal bait, glucose powder, or lactylated high-amylose starch. On day 9, colon tissues were subjected to analysis of histology and cytokine expression. The effect of lactate on the proliferation of colonocytes was assessed by enema in vivo and primary culture in vitro. Intermittent fasting resulted in restored colonic crypts and less expression of interleukin-1ß and interleukin-17 in the colon than in mice fed ad libitum. Administration of lactate in the colon at refeeding time by enema or by feeding lactylated high-amylose starch increased the number of regenerating crypts. Addition of lactate but not butyrate or acetate supported colony formation of colonocytes in vitro. In conclusion, intermittent fasting in the resolution phase of acute colitis resulted in better recovery of epithelial cells and reduced inflammation.

14.
Sci Data ; 4: 170112, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28850106

ABSTRACT

In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities.


Subject(s)
Gene Expression Profiling , Genome , Animals , Gene Expression Regulation , Humans , Mice , Promoter Regions, Genetic , Species Specificity
15.
World J Gastroenterol ; 23(13): 2294-2307, 2017 Apr 07.
Article in English | MEDLINE | ID: mdl-28428709

ABSTRACT

AIM: To clarify the roles of TWEAK and its receptor Fn14 in 5-fluorouracil (5-FU)-induced diarrhea. METHODS: Diarrhea was induced in wild-type (WT), Fn14 knockout (KO), and IL-13 receptor (IL-13R)α1 KO BALB/c mice using a single injection of 5-FU. Histological analysis, cytokine analysis, and flow cytometry was performed on ileal tissues and cells. Murine colon carcinoma-bearing mice were co-treated with an anti-TWEAK antibody and 5-FU. Embryonic fibroblast response to cytokines was also analyzed. RESULTS: 5-FU induced high Fn14 expression in epithelial cells. The severity of 5-FU-induced diarrhea was lower in Fn14 KO mice compared with WT mice. Administration of anti-TWEAK antibody reduced 5-FU-induced diarrhea without affecting the antitumor effects of 5-FU in vivo. 5-FU-induced expression of IL-13, IL-17A, TNF-α, and IFN-γ in the ileum was Fn14 dependent. The severity of 5-FU-induced diarrhea was lower in IL-13Rα1 KO mice, indicating major role for IL-13 signaling via IL-13Rα1 in pathogenesis. We found that IL-13Rα2, an IL-13 neutralizing/cell protective receptor, was strongly induced by IL-33 in vitro and in vivo. IL-13Rα2 was upregulated in the ileum of 5-FU-treated Fn14 KO mice. Thus, the deletion of Fn14 upregulated IL-13Rα2 expression, which reduced IL-13 expression and activity. CONCLUSION: Disruption of the TWEAK/Fn14 pathway affects several interconnected pathways, including those associated with IL-13, IL-33, and IL-13Rα2, to attenuate 5-FU-induced intestinal side effects.


Subject(s)
Antimetabolites, Antineoplastic/adverse effects , Cytokine TWEAK/metabolism , Diarrhea/chemically induced , Fluorouracil/adverse effects , TWEAK Receptor/metabolism , Animals , Cell Line, Tumor , Cytokine TWEAK/antagonists & inhibitors , Diarrhea/metabolism , Diarrhea/prevention & control , Interleukin-13/metabolism , Interleukin-13 Receptor alpha2 Subunit/metabolism , Interleukin-33/metabolism , Male , Mice, Inbred BALB C , Mice, Knockout , TWEAK Receptor/antagonists & inhibitors
16.
J Gastroenterol ; 52(8): 889-903, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27873093

ABSTRACT

BACKGROUND: Obesity is associated with risk of adenocarcinoma in the proximal stomach. We aimed to identify the links between dietary fat and gastric premalignant lesions. METHODS: C57BL/6 mice were fed high fat diet (HFD), and gastric mucosa was histologically analysed. Morphological changes were also analysed using an electron microscope. Transcriptome analysis of purified parietal cells was performed, and non-parietal gastric corpus epithelial cells were subjected to single-cell gene-expression profiling. Composition of gastric contents of HFD-fed mice was compared with that of the HFD itself. Lipotoxicity of free fatty acids (FFA) was examined in primary culture and organoid culture of mouse gastric epithelial cells in vitro, as well as in vivo, feeding FFA-rich diets. RESULTS: During ~8-20 weeks of HFD feeding, the parietal cells of the stomach displayed mitochondrial damage, and a total of 23% of the mice developed macroscopically distinct metaplastic lesions in the gastric corpus mucosa. Transcriptome analysis of parietal cells indicated that feeding HFD enhanced pathways related to cell death. Histological analysis and gene-expression profiling indicated that the lesions were similar to previously reported precancerous lesions identified as spasmolytic polypeptide-expressing metaplasia. FFAs, including linoleic acid with refluxed bile acids were detected in the stomachs of the HFD-fed mice. In vitro, FFAs impaired mitochondrial function and decreased the viability of parietal cells. In vivo, linoleic acid-rich diet, but not stearic acid-rich diet induced parietal-cell loss and metaplastic changes in mice. CONCLUSIONS: Dietary lipids induce parietal-cell damage and may lead to the development of precancerous metaplasia.


Subject(s)
Diet, High-Fat/adverse effects , Dietary Fats/adverse effects , Fatty Acids/adverse effects , Gastric Mucosa/pathology , Parietal Cells, Gastric/pathology , Precancerous Conditions/pathology , Animals , Bile Acids and Salts/metabolism , Cell Death/genetics , Cells, Cultured , Dietary Fats/administration & dosage , Epithelial Cells/pathology , Fatty Acids/administration & dosage , Fatty Acids/metabolism , Fatty Acids, Nonesterified/metabolism , Gastric Juice/metabolism , Gene Expression Profiling , Linoleic Acid/administration & dosage , Linoleic Acid/adverse effects , Linoleic Acid/metabolism , Male , Metaplasia/genetics , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/ultrastructure , Parietal Cells, Gastric/metabolism , Parietal Cells, Gastric/ultrastructure , Precancerous Conditions/genetics , Primary Cell Culture , Stearic Acids/administration & dosage , Stearic Acids/adverse effects
17.
J Immunol ; 197(6): 2269-79, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27511731

ABSTRACT

ESET/SETDB1, one of the major histone methyltransferases, catalyzes histone 3 lysine 9 (H3K9) trimethylation. ESET is critical for suppressing expression of retroviral elements in embryonic stem cells; however, its role in the immune system is not known. We found that thymocyte-specific deletion of ESET caused impaired T cell development, with CD8 lineage cells being most severely affected. Increased apoptosis of CD8 single-positive cells was observed, and TCR-induced ERK activation was severely inhibited in ESET(-/-) thymocytes. Genome-wide comprehensive analysis of mRNA expression and H3K9 trimethylation revealed that ESET regulates expression of numerous genes in thymocytes. Among them, FcγRIIB, whose signaling can inhibit ERK activation, was strongly and ectopically expressed in ESET(-/-) thymocytes. Indeed, genetic depletion of FcγRIIB in ESET(-/-) thymocytes rescued impaired ERK activation and partially restored defective positive selection in ESET(-/-) mice. Therefore, impaired T cell development in ESET(-/-) mice is partly due to the aberrant expression of FcγRIIB. Collectively, to our knowledge, we identify ESET as the first trimethylated H3K9 histone methyltransferase playing a crucial role in T cell development.


Subject(s)
CD8-Positive T-Lymphocytes/physiology , Gene Expression Regulation , Histone-Lysine N-Methyltransferase/metabolism , Animals , Apoptosis , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Cell Differentiation/genetics , Embryonic Stem Cells/metabolism , Extracellular Signal-Regulated MAP Kinases/immunology , Extracellular Signal-Regulated MAP Kinases/metabolism , Genome , Histone-Lysine N-Methyltransferase/deficiency , Histones/metabolism , Lysine/metabolism , Methylation , Mice , Promoter Regions, Genetic , Receptors, IgG/genetics , Receptors, IgG/metabolism , Thymocytes/immunology , Thymocytes/physiology
18.
Immunology ; 147(1): 21-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26425820

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) produce a significant amount of interleukin-5 (IL-5), which supports eosinophil responses in various tissues; they also produce IL-13, which induces mucus production and contributes to tissue repair or fibrosis. The ILC2s are activated by alarmins, such as IL-33 released from epithelia, macrophages and natural killer T (NKT) cells in response to infection and allergen exposure, leading to epithelial injury. We examined gene expression in lung ILC2s and found that ILC2s expressed Ifngr1, the receptor for interferon-γ (IFN-γ). Interferon-γ severely inhibited IL-5 and IL-13 production by lung and kidney ILC2s. To evaluate the effects in vivo, we used α-galactosylceramide (α-GalCer) to induce NKT cells to produce IL-33 and IFN-γ. Intraperitoneal injection of α-GalCer in mice induced NKT cell activation resulting in IL-5 and IL-13 production by ILC2s. Administration of anti-IFN-γ together with α-GalCer significantly enhanced the production of IL-5 and IL-13 by ILC2s in lung and kidney. Conversely, cytokine production from ILC2s was markedly suppressed after injection of exogenous IL-33 in Il33(-/-) mice pre-treated with α-GalCer. Hence, IFN-γ induced or already present in tissues can impact downstream pleiotropic functions mediated by ILC2s, such as inflammation and tissue repair.


Subject(s)
Immunity, Innate/drug effects , Interferon-gamma/metabolism , Kidney/metabolism , Lung/metabolism , Lymphocytes/metabolism , Animals , Cells, Cultured , Galactosylceramides/pharmacology , Interferon-gamma/immunology , Interferon-gamma/pharmacology , Interleukin-13/immunology , Interleukin-13/metabolism , Interleukin-33/deficiency , Interleukin-33/genetics , Interleukin-5/genetics , Interleukin-5/immunology , Interleukin-5/metabolism , Kidney/cytology , Kidney/drug effects , Kidney/immunology , Lung/cytology , Lung/drug effects , Lung/immunology , Lymphocyte Activation , Lymphocytes/drug effects , Lymphocytes/immunology , Mice, Inbred C57BL , Mice, Transgenic , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Phenotype , Receptors, Interferon/agonists , Receptors, Interferon/genetics , Receptors, Interferon/immunology , Interferon gamma Receptor
19.
PLoS One ; 10(2): e0116072, 2015.
Article in English | MEDLINE | ID: mdl-25710700

ABSTRACT

Long interspersed element-1 (L1) is a transposable element that can move within the genome, potentially leading to genome diversity and modified gene function. Although L1 activity in somatic cells is normally suppressed through DNA methylation, some L1s are activated in tumors including colorectal carcinoma. However, how L1-retrotransposition (L1-RTP) is involved in gastrointestinal disorders remains to be elucidated. We hypothesized that L1-RTP in somatic cells might contribute to colitis-associated cancer (CAC). To address this, we employed an experimental model of CAC using transgenic L1-reporter mice carrying a human L1-EGFP reporter gene. Mice were subjected to repeated cycles of colitis induced by administration of dextran sodium sulfate (DSS) in drinking water with injection of carcinogen azoxymethane (AOM). L1-RTP levels were measured by a quantitative polymerase chain reaction targeting the newly inserted reporter EGFP in various tissues and cell types, including samples obtained by laser microdissection and cell sorting with flow cytometry. DNA methylation levels of the human L1 promoter were analyzed by bisulfite pyrosequencing. AOM+DSS-treated mice exhibited significantly higher levels of L1-RTP in whole colon tissue during the acute phase of colitis when compared with control naïve mice. L1-RTP levels in whole colon tissue were positively correlated with the histological severity of colitis and degree of neutrophil infiltration into the lamina propria (LP), but not with tumor development in the colon. L1-RTP was enriched in LP mesenchymal cells rather than epithelial cells (ECs), myeloid, or lymphoid cells. DNA methylation levels of the human L1 promoter region showed a negative correlation with L1-RTP levels. L1-RTP was absent from most tumors found in 22-week-old mice. In conclusion, we demonstrated that L1-RTP was induced in the mouse CAC mucosa in accordance with the acute inflammatory response; however, retrotransposition appears not to have direct relevance to colitis-induced cancer initiation.


Subject(s)
Colitis/genetics , Intestinal Neoplasms/genetics , Long Interspersed Nucleotide Elements , Animals , DNA Methylation , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice
20.
Cancer Med ; 4(3): 415-25, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25583674

ABSTRACT

Periplakin (PPL), a member of the plakin family of proteins that localizes to desmosomes and intermediate filaments, is downregulated in human esophageal squamous cell carcinoma (ESCC). Little is known, however, about the molecular mechanism underlying the regulation of PPL expression and the contribution of PPL loss to the malignant property of the cancer is unclear. We demonstrated that PPL mRNA expression was significantly reduced in ESCC tissues compared with that in normal tissues. Therefore, we hypothesized that CpG hypermethylation is the cause of the downregulation of PPL. Bisulfite-pyrosequencing of 17 cases demonstrated that the frequency of PPL methylation was higher in ESCC tissues than in normal tissues. When human ESCC cell lines were treated with 5-aza-2'-deoxycytidine (5-aza-dC), a DNA-methyltransferase inhibitor, PPL transcription was induced. Human KYSE270 ESCC cells do not stratify under ordinary culture conditions and rarely produce desmosomes; however, the forced expression of PPL promoted cell stratification. PPL induction also promoted adhesion to extracellular matrix but delayed cell migration. The abundance of desmosome-like structures was greatly increased in PPL transfectant as determined by transmission electron microscopy. Very low expression of another desmosome protein EVPL in ESCC, even in PPL transfectant, also supported the significant role of PPL in desmosome formation and cell stratification. Our results first indicate that the downregulation of PPL mediated by DNA hypermethylation, which may play an important role in the loss of ESCC stratification and likely in metastatic phenotype.


Subject(s)
Carcinoma, Squamous Cell/genetics , DNA Methylation , Esophageal Neoplasms/genetics , Plakins/genetics , Aged , Aged, 80 and over , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/ultrastructure , Cell Line, Tumor , CpG Islands , Desmosomes , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/ultrastructure , Esophageal Squamous Cell Carcinoma , Esophagus/metabolism , Esophagus/ultrastructure , Female , Humans , Male , Middle Aged , Mucous Membrane/metabolism , Mucous Membrane/ultrastructure , Plakins/metabolism , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...