Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 410
Filter
1.
Article in English | MEDLINE | ID: mdl-38656811

ABSTRACT

Pseudomonas aeruginosa causes chronic lung infection in cystic fibrosis (CF), resulting in structural lung damage and progressive pulmonary decline. P. aeruginosa in the CF lung undergoes numerous changes, adapting to host-specific airway pressures while establishing chronic infection. P. aeruginosa undergoes lipid A structural modification during CF chronic infection, not seen in any other disease state. Lipid A, the membrane anchor of lipopolysaccharide (i.e., endotoxin), comprises the majority of the outer membrane of Gram-negative bacteria and is a potent toll-like receptor (TLR)4 agonist. The structure of P. aeruginosa lipid A is intimately linked with its recognition by TLR4, and subsequent immune response. Prior work has identified P. aeruginosa strains with altered lipid A structures that arise during chronic CF lung infection; however, the impact of P. aeruginosa lipid A structure on airway disease has not been investigated. Here, we show that P. aeruginosa lipid A lacks PagL-mediated deacylation during human airway infection using a direct-from-sample mass spectrometry approach on human bronchoalveolar lavage fluid. This structure triggers increased pro-inflammatory cytokine production by primary human macrophages. Furthermore, alterations in lipid A 2-hydroxylation impact cytokine response in a site-specific manner, independent of CFTR function. Interestingly, there is a CF-specific reduction in IL-8 secretion within the epithelial-cell compartment that only occurs in CF bronchial epithelial cells when infected with CF-adapted P. aeruginosa that lack PagL-mediated lipid A deacylation. Taken together, we show that P. aeruginosa alters its lipid A structure during acute lung infection and that this lipid A structure induces stronger signaling through TLR4.

3.
Microbiol Spectr ; 12(5): e0426023, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38587390

ABSTRACT

Streptococcus pyogenes causes a variety of human infections, and hospital outbreaks with this pathogen have also been reported. The purpose of this study is to describe the clinical characteristics of an outbreak of S. pyogenes involving 15 patients and four healthcare workers (HCWs), as well as the molecular characteristics of the causative isolates. The course and response to the outbreak were reviewed, and information on the characteristics of the patients was extracted retrospectively from the medical records. Whole-genome sequencing of the 16 causative isolates (14 from patients and two from HCWs) was also performed. All 15 patients were postoperative of head and neck cancer with tracheotomy, and 12 had invasive infections, primarily surgical site infections, all of which resolved without causing serious illness. All but the first case was detected more than 7 days after admission. S. pyogenes was detected in two patients after empiric antimicrobial administration was performed on all inpatients and HCWs, and the outbreak was finally contained in approximately 2 months. All isolates detected in patients and HCWs belonged to emm89/clade 3, a hypervirulent clone that has emerged worldwide and was classified as sequence type 646. These isolates had single nucleotide polymorphism (SNP) differences of zero to one, indicating clonal transmission. This study demonstrated an outbreak of S. pyogenes emm89/clade 3 in a ward of patients with head and neck cancer. The global emergence of hypervirulent isolates may increase the risk of outbreaks among high-risk patients. IMPORTANCE: This study describes an outbreak of Streptococcus pyogenes that occurred in a ward caring for patients with head and neck cancer and tracheostomies. Many cases of invasive infections occurred in a short period, and extensive empiric antimicrobial administration on patients and healthcare workers was performed to control the outbreak. Whole-genome sequencing analysis of the causative strains confirmed that it was a monoclonal transmission of strains belonging to emm89/clade 3. The epidemiology and clinical characteristics of S. pyogenes infections have changed with the replacement of the prevalent clones worldwide. In the 1980s, there was a reemergence of S. pyogenes infections in high-income countries due to the spread of hypervirulent emm1 strains. emm89/clade 3 has recently been spreading worldwide and shares common features with emm1, including increased production of two toxins, NADase, and streptolysin O. The outbreak reported here may reflect the high spreading potential and virulence of emm89/clade 3.


Subject(s)
Cross Infection , Disease Outbreaks , Head and Neck Neoplasms , Streptococcal Infections , Streptococcus pyogenes , Humans , Streptococcus pyogenes/genetics , Streptococcus pyogenes/isolation & purification , Streptococcus pyogenes/classification , Streptococcus pyogenes/drug effects , Head and Neck Neoplasms/microbiology , Head and Neck Neoplasms/surgery , Streptococcal Infections/microbiology , Streptococcal Infections/epidemiology , Male , Female , Middle Aged , Aged , Cross Infection/epidemiology , Cross Infection/microbiology , Retrospective Studies , Whole Genome Sequencing , Adult , Polymorphism, Single Nucleotide , Surgical Wound Infection/microbiology , Surgical Wound Infection/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Aged, 80 and over , Health Personnel/statistics & numerical data
4.
Clin Pharmacol Ther ; 115(6): 1372-1382, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38441177

ABSTRACT

With the coronavirus disease 2019 (COVID-19) pandemic, there is growing interest in utilizing adaptive platform clinical trials (APTs), in which multiple drugs are compared with a single common control group, such as a placebo or standard-of-care group. APTs evaluate several drugs for one disease and accept additions or exclusions of drugs as the trials progress; however, little is known about the efficiency of APTs over multiple stand-alone trials. In this study, we simulated the total development period, total sample size, and statistical operating characteristics of APTs and multiple stand-alone trials in drug development settings for hospitalized patients with COVID-19. Simulation studies using selected scenarios reconfirmed several findings regarding the efficiency of APTs. The APTs without staggered addition of drugs showed a shorter total development period than stand-alone trials, but the difference rapidly diminished if patient's enrollment was accelerated during the trials owing to the spread of infection. APTs with staggered addition of drugs still have the possibility of reducing the total development period compared with multiple stand-alone trials in some cases. Our study demonstrated that APTs could improve efficiency relative to multiple stand-alone trials regarding the total development period and total sample size without undermining statistical validity; however, this improvement varies depending on the speed of patient enrollment, sample size, presence/absence of family-wise error rate adjustment, allocation ratio between drug and placebo groups, and interval of staggered addition of drugs. Given the complexity of planning and implementing APT, the decision to implement APT during a pandemic must be made carefully.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Computer Simulation , Drug Development , Humans , Drug Development/methods , COVID-19/epidemiology , Sample Size , Pandemics , SARS-CoV-2 , Clinical Trials as Topic/methods , Antiviral Agents/therapeutic use , Adaptive Clinical Trials as Topic , Research Design
5.
Sci Rep ; 14(1): 5119, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38429496

ABSTRACT

Inhibiting tubular urate reabsorption may protect the kidney from urate-induced tubular injury. However, this approach may promote intratubular uric acid crystallization, especially in acidified urine, which could be toxic to the kidney. To assess how tubular urate handling affects kidney outcomes, we conducted a retrospective cohort study including 1042 patients with estimated glomerular filtration rates (eGFR) of 15-60 mL/min/1.73 m2. The exposures were fractional excretion of uric acid (FEUA) and urinary uric acid-to-creatinine ratio (UUCR). The kidney outcome was defined as a halving of eGFR from baseline or initiating kidney replacement therapy. The median FEUA and UUCR were 7.2% and 0.33 g/gCre, respectively. During a median follow-up of 1.9 years, 314 kidney outcomes occurred. In a multivariate Cox model, the lowest FEUA quartile exhibited a 1.68-fold higher rate of kidney outcome than the highest FEUA quartile (95% confidence interval, 1.13-2.50; P = 0.01). Similarly, lower UUCR was associated with a higher rate of kidney outcome. Notably, patients in the highest quartile of FEUA and UUCR were at the lowest risk of kidney outcome even among those with aciduria. In conclusion, lower FEUA and UUCR were associated with a higher risk of kidney failure, suggesting that increased urate reabsorption is harmful to the kidney.


Subject(s)
Renal Insufficiency, Chronic , Uric Acid , Humans , Uric Acid/urine , Retrospective Studies , Kidney , Glomerular Filtration Rate , Renal Insufficiency, Chronic/urine
6.
Infect Control Hosp Epidemiol ; : 1-3, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38482594

ABSTRACT

We evaluated the secondary COVID-19 incidence among uninfected hospitalized patients after nosocomial COVID-19 exposure. An exposure source of SARS-CoV-2 was hospitalized patients or healthcare personnel (HCP) newly diagnosed as having COVID-19. Patients exposed to a COVID-19-infected patient in a shared room more frequently developed COVID-19 than those exposed to an infected HCP.

7.
Antimicrob Agents Chemother ; 68(5): e0167223, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38517188

ABSTRACT

Carbapenemase-producing Enterobacterales (CPEs) are one of the top priority antimicrobial-resistant pathogens. Among CPEs, those producing acquired metallo-ß-lactamases (MBLs) are considered particularly problematic as few agents are active against them. Imipenemase (IMP) is the most frequently encountered acquired MBL in Japan, but comprehensive assessment of clinical and microbiological features of IMP-producing Enterobacterales infection remains scarce. Here, we retrospectively evaluated 62 patients who were hospitalized at a university hospital in Japan and had IMP-producing Enterobacterales from a clinical culture. The isolates were either Enterobacter cloacae complex or Klebsiella pneumoniae, and most of them were isolated from sputum. The majority of K. pneumoniae, but not E. cloacae complex isolates, were susceptible to aztreonam. Sequence type (ST) 78 and ST517 were prevalent for E. cloacae complex and K. pneumoniae, respectively, and all isolates carried blaIMP-1. Twenty-four of the patients were deemed infected with IMP-producing Enterobacterales. Among the infected patients, therapy varied and largely consisted of conventional ß-lactam agents, fluoroquinolones, or combinations. Three (13%), five (21%), and nine (38%) of them died by days 14, 30, and 90, respectively. While incremental mortality over 90 days was observed in association with underlying comorbidities, active conventional treatment options were available for most patients with IMP-producing Enterobacterales infections, distinguishing them from more multidrug-resistant CPE infections associated with globally common MBLs, such as New Delhi metallo-ß-lactamase (NDM) and Verona integron-encoded metallo-ß-lactamase (VIM).


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Enterobacter cloacae , Klebsiella pneumoniae , Microbial Sensitivity Tests , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , beta-Lactamases/genetics , beta-Lactamases/metabolism , Humans , Enterobacter cloacae/genetics , Enterobacter cloacae/drug effects , Enterobacter cloacae/isolation & purification , Enterobacter cloacae/enzymology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Male , Retrospective Studies , Female , Middle Aged , Aged , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy , Aztreonam/pharmacology , Aztreonam/therapeutic use , Japan , Drug Resistance, Multiple, Bacterial/genetics , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Aged, 80 and over , Adult
8.
Fujita Med J ; 10(1): 24-29, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38332777

ABSTRACT

Objectives: Multidrug-resistant (MDR) bacterial infections are highly prevalent among long-term care facility (LTCF) residents, and are thus important targets for antimicrobial stewardship. Diagnoses of urinary tract infections (UTIs), which are associated with antimicrobial use in these facilities, are not always made by physicians. Past epidemiologic studies have included asymptomatic bacteriuria together with UTIs. The National Healthcare Safety Network has initiated a surveillance program to identify the causative organisms of UTIs in LTCF residents. In Japan, medical care for these residents is provided through in-person physician visits; however, limited related data are available. Therefore, we investigated the organisms causing UTIs and their drug susceptibility among LTCF residents in central Japan, and examined the prevalence of multidrug resistance, its risk factors, and correlations with clinical outcomes. Methods: We retrospectively evaluated clinical and urine culture data of LTCF residents with physician-diagnosed UTIs between April 1, 2019, and April 30, 2022. Results: The detection rate of multidrug-resistant organisms was high, with Escherichia coli being the most prevalent. Ceftriaxone was frequently used for initial therapy. The initial antimicrobial agents were significantly less active against MDR pathogens than non-MDR pathogens. Most residents continued to receive the initial agents regardless of culture results. Nonetheless, differences in the therapy duration, relapse and hospitalization rates, and death rate within 28 days between the multidrug-resistant and non-multidrug-resistant groups were not significant. Conclusions: Antimicrobial stewardship is essential for reducing antimicrobial use and selective pressure in LTCFs in Japan; however, more specific data are needed for its effective implementation.

9.
Fujita Med J ; 10(1): 8-15, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38332778

ABSTRACT

Objectives: Taxonomic assignment based on whole-genome sequencing data facilitates clear demarcation of species within a complex genus. Here, we applied a unique pan-genome phylogenetic method, open reading frame (ORF)-based binarized structure network analysis (OSNA), for taxonomic inference of Aeromonas spp., a complex taxonomic group consisting of 30 species. Methods: Data from 335 publicly available Aeromonas genomes, including the reference genomes of 30 species, were used to build a phylogenetic tree using OSNA. In OSNA, whole-genome structures are expressed as binary sequences based on the presence or absence of ORFs, and a tree is generated using neighbor-net, a distance-based method for constructing phylogenetic networks from binary sequences. The tree built by OSNA was compared to that constructed by a core-genome single-nucleotide polymorphism (SNP)-based analysis. Furthermore, the orthologous average nucleotide identity (OrthoANI) values of the sequences that clustered in a single clade in the OSNA-based tree were calculated. Results: The phylogenetic tree constructed with OSNA successfully delineated the majority of species of the genus Aeromonas forming conspecific clades for individual species, which was corroborated by OrthoANI values. Moreover, the OSNA-based phylogenetic tree demonstrated high compositional similarity to the core-genome SNP-based phylogenetic tree, supported by the Fowlkes-Mallows index. Conclusions: We propose that OSNA is a useful tool in predicting the taxonomic classification of complex bacterial genera.

10.
J Antimicrob Chemother ; 79(4): 801-809, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38334390

ABSTRACT

OBJECTIVES: To investigate the genomic diversity and ß-lactam susceptibilities of Enterococcus faecalis collected from patients with infective endocarditis (IE). METHODS: We collected 60 contemporary E. faecalis isolates from definite or probable IE cases identified between 2018 and 2021 at the University of Pittsburgh Medical Center. We used whole-genome sequencing to study bacterial genomic diversity and employed antibiotic checkerboard assays and a one-compartment pharmacokinetic-pharmacodynamic (PK/PD) model to investigate bacterial susceptibility to ampicillin and ceftriaxone both alone and in combination. RESULTS: Genetically diverse E. faecalis were collected, however, isolates belonging to two STs, ST6 and ST179, were collected from 21/60 (35%) IE patients. All ST6 isolates encoded a previously described mutation upstream of penicillin-binding protein 4 (pbp4) that is associated with pbp4 overexpression. ST6 isolates had higher ceftriaxone MICs and higher fractional inhibitory concentration index values for ampicillin and ceftriaxone (AC) compared to other isolates, suggesting diminished in vitro AC synergy against this lineage. Introduction of the pbp4 upstream mutation found among ST6 isolates caused increased ceftriaxone resistance in a laboratory E. faecalis isolate. PK/PD testing showed that a representative ST6 isolate exhibited attenuated efficacy of AC combination therapy at humanized antibiotic exposures. CONCLUSIONS: We find evidence for diminished in vitro AC activity among a subset of E. faecalis IE isolates with increased pbp4 expression. These findings suggest that alternate antibiotic combinations against diverse contemporary E. faecalis IE isolates should be evaluated.


Subject(s)
Endocarditis, Bacterial , Endocarditis , Gram-Positive Bacterial Infections , Humans , Ceftriaxone/pharmacology , Ceftriaxone/therapeutic use , Enterococcus faecalis , Ampicillin/pharmacology , Ampicillin/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Endocarditis, Bacterial/drug therapy , Endocarditis, Bacterial/microbiology , Endocarditis/drug therapy , Microbial Sensitivity Tests , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/microbiology , Drug Therapy, Combination
11.
Int J Antimicrob Agents ; 63(5): 107119, 2024 May.
Article in English | MEDLINE | ID: mdl-38417706

ABSTRACT

OBJECTIVES: Imipenem-relebactam (IMR), a novel ß-lactam/ß-lactamase inhibitor combination, is recommended for infections caused by difficult-to-treat Pseudomonas aeruginosa. This study aimed to investigate the evolution trajectory of IMR resistance under the selection of levofloxacin in P. aeruginosa. METHODS: Antimicrobial susceptibility testing, complete genome sequencing and gene manipulation experiments were performed. Quantitative reverse transcription PCR for specific genes and porin levels were detected. Evolution trajectory was simulated in vitro by induction assay. RESULTS: P. aeruginosa HS347 and HS355 were isolated from abdominal drainage of two neighbouring patients (S and Z) undergoing surgery of colon carcinoma in Shanghai, China, with the latter patient having received levofloxacin. They were closely related ST16 strains, and both carried blaKPC-2 plasmids highly similar to those of P. aeruginosa endemic clones from Zhejiang province, where patient Z had received enteroscopy before this admission. Acquisition of resistance was observed for both IMR and fluoroquinolones in HS355, likely prompted by treatment with levofloxacin. The T274I substitution in MexS (putative oxidoreductase), upregulated efflux pump operon mexEF-oprN and decreased production of porin OprD leading to cross-resistance to fluoroquinolones and IMR, which was also verified by in vitro mutant selection under levofloxacin selection. CONCLUSIONS: The emergence of a rare blaKPC-2-plasmid-bearing ST16 clone implies the horizonal spread and inter-regional dissemination of a high-risk plasmid-clone combination, representing a public health challenge. Levofloxacin exposure can select for mexS inactivating mutation, which in turn leads to IMR resistance phenotype, implicating the role of an unrelated, widely used antimicrobial agent in insidiously triggering the development of cross resistance to a latest ß-lactam/ß-lactamase inhibitor combination.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Imipenem , Levofloxacin , Microbial Sensitivity Tests , Pseudomonas Infections , Pseudomonas aeruginosa , beta-Lactamases , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Levofloxacin/pharmacology , Humans , Azabicyclo Compounds/pharmacology , Imipenem/pharmacology , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Pseudomonas Infections/microbiology , Pseudomonas Infections/drug therapy , China , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutation , beta-Lactamase Inhibitors/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics
12.
Clin Exp Nephrol ; 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38402502

ABSTRACT

BACKGROUND: Volume overload is common and associated with high mortality in patients on peritoneal dialysis (PD). Traditional strategies including diuretics, water/salt restriction, and icodextrin-based solutions cannot always fully correct this condition, necessitating novel alternative strategies. Recent studies confirmed the expression of sodium-glucose cotransporter 2 (SGLT2) in the human peritoneum. Experimental data suggest that SGLT2 inhibitors decrease glucose absorption from the PD solution, thereby increasing the ultrafiltration volume. This trial aims to assess whether SGLT2 inhibitors increase the ultrafiltration volume in patients on PD. METHODS: The EMPOWERED trial (trial registration: jRCTs051230081) is a multicenter, randomized, double-blind, placebo-controlled, crossover trial. Patients with clinically diagnosed chronic heart failure are eligible regardless of the presence of diabetes if they use at least 3 L/day glucose-based PD solutions. Participants will be randomly assigned (1:1) to receive empagliflozin 10 mg once daily and then placebo or vice versa. Each treatment period will last 8 weeks with a 4-week washout period. This study will recruit at least 36 randomized participants. The primary endpoint is the change in the daily ultrafiltration volume from baseline to week 8 in each intervention period. The key secondary endpoints include changes in the biomarkers of drained PD solutions, renal residual function, and anemia-related parameters. CONCLUSIONS: This trial aims to assess the benefit of SGLT2 inhibitors in fluid management with a novel mechanism of action in patients on PD. It will also provide insights into the effects of SGLT2 inhibitors on solute transport across the peritoneal membrane and residual renal function.

13.
Nat Microbiol ; 9(3): 631-646, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38409256

ABSTRACT

The antibiotic cefiderocol hijacks iron transporters to facilitate its uptake and resists ß-lactamase degradation. While effective, resistance has been detected clinically with unknown mechanisms. Here, using experimental evolution, we identified cefiderocol resistance mutations in Pseudomonas aeruginosa. Resistance was multifactorial in host-mimicking growth media, led to multidrug resistance and paid fitness costs in cefiderocol-free environments. However, kin selection drove some resistant populations to cross-protect susceptible individuals from killing by increasing pyoverdine secretion via a two-component sensor mutation. While pyochelin sensitized P. aeruginosa to cefiderocol killing, pyoverdine and the enterobacteria siderophore enterobactin displaced iron from cefiderocol, preventing uptake by susceptible cells. Among 113 P. aeruginosa intensive care unit clinical isolates, pyoverdine production directly correlated with cefiderocol tolerance, and high pyoverdine producing isolates cross-protected susceptible P. aeruginosa and other Gram-negative bacteria. These in vitro data show that antibiotic cross-protection can occur via degradation-independent mechanisms and siderophores can serve unexpected protective cooperative roles in polymicrobial communities.


Subject(s)
Anti-Bacterial Agents , Siderophores , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Siderophores/metabolism , Siderophores/pharmacology , Cefiderocol , Iron/metabolism , Enterobacteriaceae/metabolism , Pseudomonas aeruginosa/metabolism
14.
JAMA Netw Open ; 7(2): e2354991, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38335000

ABSTRACT

Importance: Treatment options for COVID-19 are warranted irrespective of the presence of risk factors for severe disease. Objective: To assess the efficacy and safety of ensitrelvir in patients with mild to moderate COVID-19. Design, Setting, and Participants: This phase 3 part of a phase 2/3, double-blind, placebo-controlled randomized clinical trial was conducted from February 10 to July 10, 2022, with a 28-day follow-up period, at 92 institutions in Japan, Vietnam, and South Korea. Patients (aged 12 to <70 years) with mild to moderate COVID-19 within 120 hours of positive viral test results were studied. Interventions: Patients were randomized (1:1:1) to receive 125 mg of once-daily ensitrelvir (375 mg on day 1), 250 mg of once-daily ensitrelvir (750 mg on day 1), or placebo for 5 days. Main Outcomes and Measures: The primary end point was the time to resolution of the composite of 5 characteristic symptoms of SARS-CoV-2 Omicron infection, assessed using a Peto-Prentice generalized Wilcoxon test stratified by vaccination history. Virologic efficacy and safety were also assessed. Results: A total of 1821 patients were randomized, of whom 1030 (347 in the 125-mg ensitrelvir group, 340 in the 250-mg ensitrelvir group, and 343 in the placebo group) were randomized in less than 72 hours of disease onset (primary analysis population). The mean (SD) age in this population was 35.2 (12.3) years, and 552 (53.6%) were men. A significant difference was observed between the 125-mg ensitrelvir group and the placebo group (P = .04 with a Peto-Prentice generalized Wilcoxon test). The difference in median time was approximately 1 day between the 125-mg ensitrelvir group and the placebo group (167.9 vs 192.2 hours; difference, -24.3 hours; 95% CI, -78.7 to 11.7 hours). Adverse events were observed in 267 of 604 patients (44.2%) in the 125-mg ensitrelvir group, 321 of 599 patients (53.6%) in the 250-mg ensitrelvir group, and 150 of 605 patients (24.8%) in the placebo group, which included a decrease in high-density lipoprotein level (188 [31.1%] in the 125-mg ensitrelvir group, 231 [38.6%] in the 250-mg ensitrelvir group, and 23 [3.8%] in the placebo group). No treatment-related serious adverse events were reported. Conclusions and Relevance: In this randomized clinical trial, 125-mg ensitrelvir treatment reduced the time to resolution of the 5 typical COVID-19 symptoms compared with placebo in patients treated in less than 72 hours of disease onset; the absolute difference in median time to resolution was approximately 1 day. Ensitrelvir demonstrated clinical and antiviral efficacy without new safety concerns. Generalizability to populations outside Asia should be confirmed. Trial Registration: Japan Registry of Clinical Trials Identifier: jRCT2031210350.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Indazoles , Triazines , Triazoles , Female , Humans , Male , Risk Factors , SARS-CoV-2 , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged
15.
Antimicrob Agents Chemother ; 68(3): e0125823, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38289078

ABSTRACT

The activity of a novel ß-lactamase inhibitor combination, sulbactam-durlobactam (SUL-DUR), was tested against 87 colistin-resistant and/or cefiderocol-non-susceptible carbapenem-resistant Acinetobacter baumannii clinical isolates collected from U.S. hospitals between 2017 and 2019. Among them, 89% and 97% were susceptible to SUL-DUR and imipenem plus SUL-DUR, with MIC50/MIC90 values of 2 µg/mL/8 µg/mL and 1 µg/mL/4 µg/mL, respectively. The presence of amino acid substitutions in penicillin-binding protein 3, including previously reported A515V or T526S, was associated with SUL-DUR non-susceptibility.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Azabicyclo Compounds , Humans , Colistin/pharmacology , Anti-Bacterial Agents/pharmacology , Cefiderocol , Acinetobacter Infections/drug therapy , Sulbactam/pharmacology , Imipenem/pharmacology , Hospitals , Microbial Sensitivity Tests , Drug Combinations
16.
J Infect Dis ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38271564

ABSTRACT

BACKGROUND: Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp) bloodstream infections are associated with high mortality. We studied clinical bloodstream KPC-Kp isolates to investigate mechanisms of resistance to complement, a key host defense against bloodstream infection. METHODS: We tested growth of KPC-Kp isolates in human serum. In serial isolates from a single patient, we performed whole genome sequencing and tested for complement resistance and binding by mixing study, direct ELISA, flow cytometry, and electron microscopy. We utilized an isogenic deletion mutant in phagocytosis assays and an acute lung infection model. RESULTS: We found serum resistance in 16 of 59 (27%) KPC-Kp clinical bloodstream isolates. In five genetically-related bloodstream isolates from a single patient, we noted a loss-of-function mutation in the capsule biosynthesis gene, wcaJ. Disruption of wcaJ was associated with decreased polysaccharide capsule, resistance to complement-mediated killing, and surprisingly, increased binding of complement proteins. Furthermore, an isogenic wcaJ deletion mutant exhibited increased opsono-phagocytosis in vitro and impaired in vivo control in the lung after airspace macrophage depletion in mice. CONCLUSIONS: Loss of function in wcaJ led to increased complement resistance, complement binding, and opsono-phagocytosis, which may promote KPC-Kp persistence by enabling co-existence of increased bloodstream fitness and reduced tissue virulence.

17.
mBio ; 15(2): e0287423, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38179965

ABSTRACT

ß-Lactamases can accumulate stepwise mutations that increase their resistance profiles to the latest ß-lactam agents. CMY-185 is a CMY-2-like ß-lactamase and was identified in an Escherichia coli clinical strain isolated from a patient who underwent treatment with ceftazidime-avibactam. CMY-185, possessing four amino acid substitutions of A114E, Q120K, V211S, and N346Y relative to CMY-2, confers high-level ceftazidime-avibactam resistance, and accumulation of the substitutions incrementally enhances the level of resistance to this agent. However, the functional role of each substitution and their interplay in enabling ceftazidime-avibactam resistance remains unknown. Through biochemical and structural analysis, we present the molecular basis for the enhanced ceftazidime hydrolysis and impaired avibactam inhibition conferred by CMY-185. The substituted Y346 residue is a major driver of the functional evolution as it rejects primary avibactam binding due to the steric hindrance and augments oxyimino-cephalosporin hydrolysis through a drastic structural change, rotating the side chain of Y346 and then disrupting the H-10 helix structure. The other substituted residues E114 and K120 incrementally contribute to rejection of avibactam inhibition, while S211 stimulates the turnover rate of the oxyimino-cephalosporin hydrolysis. These findings indicate that the N346Y substitution is capable of simultaneously expanding the spectrum of activity against some of the latest ß-lactam agents with altered bulky side chains and rejecting the binding of ß-lactamase inhibitors. However, substitution of additional residues may be required for CMY enzymes to achieve enhanced affinity or turnover rate of the ß-lactam agents leading to clinically relevant levels of resistance.IMPORTANCECeftazidime-avibactam has a broad spectrum of activity against multidrug-resistant Gram-negative bacteria including carbapenem-resistant Enterobacterales including strains with or without production of serine carbapenemases. After its launch, emergence of ceftazidime-avibactam-resistant strains that produce mutated ß-lactamases capable of efficiently hydrolyzing ceftazidime or impairing avibactam inhibition are increasingly reported. Furthermore, cross-resistance towards cefiderocol, the latest cephalosporin in clinical use, has been observed in some instances. Here, we clearly demonstrate the functional role of the substituted residues in CMY-185, a four amino-acid variant of CMY-2 identified in a patient treated with ceftazidime-avibactam, for high-level resistance to this agent and low-level resistance to cefiderocol. These findings provide structural insights into how ß-lactamases may incrementally alter their structures to escape multiple advanced ß-lactam agents.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Ceftazidime , Humans , Ceftazidime/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cephalosporins/pharmacology , Drug Combinations , Cefiderocol , beta-Lactamases/metabolism , Escherichia coli/metabolism , Microbial Sensitivity Tests
18.
J Clin Microbiol ; 62(1): e0109623, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38054730

ABSTRACT

Rapid diagnostic tests (RDTs) for bloodstream infections have the potential to reduce time to appropriate antimicrobial therapy and improve patient outcomes. Previously, an in-house, lipid-based, matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) method, Fast Lipid Analysis Technique (FLAT MS), has shown promise as a rapid pathogen identification method. In this study, FLAT MS for direct from blood culture identification was evaluated and compared to FDA-cleared identification methods using the Benefit-risk Evaluation Framework (BED-FRAME) analysis. FLAT MS was evaluated and compared to Bruker Sepsityper and bioMérieux BioFire FilmArray BCID2 using results from a previous study. For this study, 301 positive blood cultures were collected from the University of Maryland Medical Center. The RDTs were compared by their sensitivities, time-to-results, hands-on time, and BED-FRAME analysis. The overall sensitivity of all platforms compared to culture results from monomicrobial-positive blood cultures was 88.3%. However, the three RDTs differed in their accuracy for identifying Gram-positive bacteria, Gram-negative bacteria, and yeast. Time-to-results for FLAT MS, Sepsityper, and BioFire BCID2 were all approximately one hour. Hands-on times for FLAT MS, Sepsityper, and BioFire BCID2 were 10 (±1.3), 40 (±2.8), and 5 (±0.25) minutes, respectively. BED-FRAME demonstrated that each RDT had utility at different pathogen prevalence and relative importance. BED-FRAME is a useful tool that can used to determine which RDT is best for a healthcare center.


Subject(s)
Bacteremia , Sepsis , Humans , Bacteremia/diagnosis , Bacteremia/microbiology , Rapid Diagnostic Tests , Bacteriological Techniques/methods , Sepsis/diagnosis , Blood Culture , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Lipids
19.
Clin Infect Dis ; 78(2): 248-258, 2024 02 17.
Article in English | MEDLINE | ID: mdl-37738153

ABSTRACT

BACKGROUND: Carbapenem-resistant Acinetobacter baumannii (CRAb) is 1 of the most problematic antimicrobial-resistant bacteria. We sought to elucidate the international epidemiology and clinical impact of CRAb. METHODS: In a prospective observational cohort study, 842 hospitalized patients with a clinical CRAb culture were enrolled at 46 hospitals in five global regions between 2017 and 2019. The primary outcome was all-cause mortality at 30 days from the index culture. The strains underwent whole-genome analysis. RESULTS: Of 842 cases, 536 (64%) represented infection. By 30 days, 128 (24%) of the infected patients died, ranging from 1 (6%) of 18 in Australia-Singapore to 54 (25%) of 216 in the United States and 24 (49%) of 49 in South-Central America, whereas 42 (14%) of non-infected patients died. Bacteremia was associated with a higher risk of death compared with other types of infection (40 [42%] of 96 vs 88 [20%] of 440). In a multivariable logistic regression analysis, bloodstream infection and higher age-adjusted Charlson comorbidity index were independently associated with 30-day mortality. Clonal group 2 (CG2) strains predominated except in South-Central America, ranging from 216 (59%) of 369 in the United States to 282 (97%) of 291 in China. Acquired carbapenemase genes were carried by 769 (91%) of the 842 isolates. CG2 strains were significantly associated with higher levels of meropenem resistance, yet non-CG2 cases were over-represented among the deaths compared with CG2 cases. CONCLUSIONS: CRAb infection types and clinical outcomes differed significantly across regions. Although CG2 strains remained predominant, non-CG2 strains were associated with higher mortality. Clinical Trials Registration. NCT03646227.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Humans , Acinetobacter baumannii/genetics , Carbapenems/pharmacology , Carbapenems/therapeutic use , Prospective Studies , Microbial Sensitivity Tests , Acinetobacter Infections/drug therapy , Acinetobacter Infections/epidemiology , Acinetobacter Infections/microbiology , beta-Lactamases/genetics , Bacterial Proteins/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
20.
J Infect Chemother ; 30(3): 219-227, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37832822

ABSTRACT

INTRODUCTION: Favipiravir terminates severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication. Accordingly, early administration of favipiravir to SARS-CoV-2-infected coronavirus disease 2019 (COVID-19) patients may be expected to suppress disease progression. METHODS: A randomized double-blind placebo-controlled trial was conducted to demonstrate efficacy of favipiravir in reducing disease progression in patients with mild COVID-19. The participants were unvaccinated patients with comorbidities and at risk of progression to severe disease. Patients were enrolled within 72 h of disease onset and randomized to receive either favipiravir (1800 mg/dose on Day 1 followed by 800 mg/dose) or matching placebo twice daily for 10 days. The primary endpoint was the proportion of patients requiring oxygen therapy within 28 days of randomization. RESULTS: The trial was discontinued after enrolling 84 patients due to slower than anticipated enrollment caused by rapid uptake of SARS-CoV-2-vaccines and the emergence of the Omicron variant. Results from the 84 patients demonstrated no significant difference in all clinical outcomes. In post-hoc analyses, favipiravir treatment showed higher efficacy in patients within 48 h of onset. No deaths or severe adverse events were documented in the favipiravir group. Plasma concentrations of favipiravir from Day 2 onward were maintained above 40 µg/mL. CONCLUSIONS: Conducting clinical trials for pathogens like SARS-CoV-2 that rapidly accumulate mutations leading to altered disease characteristics carries significant risks unless it can be done in a short period. Therefore, it would be important to prepare the comprehensive clinical trial platform that can appropriately and promptly evaluate drugs even under a pandemic.


Subject(s)
Amides , COVID-19 , Pyrazines , Humans , Antiviral Agents/adverse effects , Disease Progression , SARS-CoV-2 , Treatment Outcome , Double-Blind Method
SELECTION OF CITATIONS
SEARCH DETAIL
...