Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiol ; 15(10): 2829-40, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23663419

ABSTRACT

Heavy metals are pollutants which affect all organisms. Since a small number of eukaryotes have been investigated with respect to metal resistance, we hypothesize that many genes that control this phenomenon remain to be identified. This was tested by screening soil eukaryotic metatranscriptomes which encompass RNA from organisms belonging to the main eukaryotic phyla. Soil-extracted polyadenylated mRNAs were converted into cDNAs and 35 of them were selected for their ability to rescue the metal (Cd or Zn) sensitive phenotype of yeast mutants. Few of the genes belonged to families known to confer metal resistance when overexpressed in yeast. Several of them were homologous to genes that had not been studied in the context of metal resistance. For instance, the BOLA ones, which conferred cross metal (Zn, Co, Cd, Mn) resistance may act by interfering with Fe homeostasis. Other genes, such as those encoding 110- to 130-amino-acid-long, cysteine-rich polypeptides, had no homologues in databases. This study confirms that functional metatranscriptomics represents a powerful approach to address basic biological processes in eukaryotes. The selected genes can be used to probe new pathways involved in metal homeostasis and to manipulate the resistance level of selected organisms.


Subject(s)
Drug Resistance/genetics , Eukaryota/drug effects , Eukaryota/genetics , Metals, Heavy/pharmacology , Soil Microbiology , Soil Pollutants/pharmacology , Yeasts/genetics , Gene Expression Profiling , Gene Library , Genetic Variation , Metals, Heavy/metabolism , Molecular Sequence Data , Soil Pollutants/metabolism , Yeasts/drug effects
2.
Fungal Genet Biol ; 52: 53-64, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23232015

ABSTRACT

Two full-length cDNAs (OmZnT1 and OmFET) encoding membrane transporters were identified by yeast functional screening in the heavy metal tolerant ericoid mycorrhizal isolate Oidiodendron maius Zn. OmZnT1 belongs to the Zn-Type subfamily of the cation diffusion facilitators, whereas OmFET belongs to the family of iron permeases. Their properties were investigated in yeast by functional complementation of mutants affected in metal uptake and metal tolerance. Heterologous expression of OmZnT1 and OmFET in a Zn-sensitive yeast mutant restored the wild-type phenotype. Additionally, OmZnT1 expression also restored cobalt tolerance in a Co-sensitive mutant. A GFP fusion protein revealed that OmZnT1 was targeted to the endoplasmic reticulum membrane, a result consistent with a function for OmZnT1 in metal sequestration. Similarly to other iron permeases, OmFET-GFP was localized on the plasma membrane. OmFET restored the growth of uptake-defective strains for iron and zinc. Zinc-sensitive yeast mutants expressing OmFET specifically accumulated magnesium, as compared to cells transformed with the empty vector. We suggest that OmFET may counteract zinc toxicity by increasing entry of magnesium into the cell.


Subject(s)
Ascomycota/enzymology , Membrane Transport Proteins/metabolism , Poisoning , Zinc/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Gene Expression Regulation, Fungal , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Heavy Metal Poisoning , Iron/metabolism , Membrane Transport Proteins/genetics , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL