Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Altern Lab Anim ; 50(1): 71-75, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35179997

ABSTRACT

The need to reduce, refine and replace animal experimentation has led to a boom in the establishment of new approach methodologies (NAMs). This promising trend brings the hope that the replacement of animals by using NAMs will become increasingly accepted by regulators, included in legislation, and consequently more-often implemented by industry. The majority of NAMs, however, are still not very well understood, either due to the complexity of the applied approach or the data analysis workflow. A potential solution to this problem is the provision of better educational resources to scientists new to the area - showcasing the added value of NAMs and outlining various ways of overcoming issues associated with knowledge gaps. In this paper, the educational exchange between four institutions - namely, two universities and two SMEs - via a series of video training sessions, is described. The goal of this exchange was to showcase an exemplary event to help introduce scientists to non-animal approaches, and to actively support the development of resources enabling the use of alternatives to laboratory animals.


Subject(s)
Animal Experimentation , Animal Testing Alternatives , Animal Testing Alternatives/methods , Animals , Universities
2.
Regul Toxicol Pharmacol ; 114: 104652, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32251711

ABSTRACT

The utility of the Adverse Outcome Pathway (AOP) concept has been largely recognized by scientists, however, the AOP generation is still mainly done manually by screening through evidence and extracting probable associations. To accelerate this process and increase the reliability, we have developed an semi-automated workflow for AOP hypothesis generation. In brief, association mining methods were applied to high-throughput screening, gene expression, in vivo and disease data present in ToxCast and Comparative Toxicogenomics Database. This was supplemented by pathway mapping using Reactome to fill in gaps and identify events occurring at the cellular/tissue levels. Furthermore, in vivo data from TG-Gates was integrated to finally derive a gene, pathway, biochemical, histopathological and disease network from which specific disease sub-networks can be queried. To test the workflow, non-genotoxic-induced hepatocellular carcinoma (HCC) was selected as a case study. The implementation resulted in the identification of several non-genotoxic-specific HCC-connected genes belonging to cell proliferation, endoplasmic reticulum stress and early apoptosis. Biochemical findings revealed non-genotoxic-specific alkaline phosphatase increase. The explored non-genotoxic-specific histopathology was associated with early stages of hepatic steatosis, transforming into cirrhosis. This work illustrates the utility of computationally predicted constructs in supporting development by using pre-existing knowledge in a fast and unbiased manner.


Subject(s)
Adverse Outcome Pathways , Automation , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Workflow , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Databases, Factual , High-Throughput Screening Assays , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Toxicogenetics
3.
Toxicol In Vitro ; 54: 23-32, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30196099

ABSTRACT

The integration of existing knowledge to support the risk assessment of chemicals is an ongoing challenge for scientists, risk assessors and risk managers. In addition, European Union regulations limiting the use of new animal testing in cosmetics makes already existing information even more valuable. Applying a previous SEURAT-1 program framework to derive predictions of in vivo toxicity responses for a compound, we selected piperonyl butoxide (PBO) as a case study for identification of knowledge and methodology gaps in understanding a compound's effects on the human liver. This is investigated through integration of data from human in vitro transcriptomics studies, biological pathway analysis, chemical and disease associations, and adverse outcome pathway (AOP) information. The outcomes of the analysis are used to generate AOPs of liver-related endpoints, identifying areas of concern for risk assessors and regulators. We demonstrate that integration of data through already existing and publicly available tools can produce outcomes comparable to those that may be found through more conventional time- and resource-intensive methods. It is also expected that, with more refinement, this approach could in the future provide evidence to support chemical risk assessment, while also identifying data gaps for which additional testing may be needed.


Subject(s)
Adverse Outcome Pathways , Liver/drug effects , Pesticide Synergists/toxicity , Piperonyl Butoxide/toxicity , Animal Testing Alternatives , Hep G2 Cells , Humans , Liver Diseases/etiology
4.
Arch Toxicol ; 92(4): 1593-1608, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29411056

ABSTRACT

Although the value of the regulatory accepted batteries for in vitro genotoxicity testing is recognized, they result in a high number of false positives. This has a major impact on society and industries developing novel compounds for pharmaceutical, chemical, and consumer products, as afflicted compounds have to be (prematurely) abandoned or further tested on animals. Using the metabolically competent human HepaRG™ cell line and toxicogenomics approaches, we have developed an upgraded, innovative, and proprietary gene classifier. This gene classifier is based on transcriptomic changes induced by 12 genotoxic and 12 non-genotoxic reference compounds tested at sub-cytotoxic concentrations, i.e., IC10 concentrations as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The resulting gene classifier was translated into an easy-to-handle qPCR array that, as shown by pathway analysis, covers several different cellular processes related to genotoxicity. To further assess the predictivity of the tool, a set of 5 known positive and 5 known negative test compounds for genotoxicity was evaluated. In addition, 2 compounds with debatable genotoxicity data were tested to explore how the qPCR array would classify these. With an accuracy of 100%, when equivocal results were considered positive, the results showed that combining HepaRG™ cells with a genotoxin-specific qPCR array can improve (geno)toxicological hazard assessment. In addition, the developed qPCR array was able to provide additional information on compounds for which so far debatable genotoxicity data are available. The results indicate that the new in vitro tool can improve human safety assessment of chemicals in general by basing predictions on mechanistic toxicogenomics information.


Subject(s)
DNA Damage , Mutagenicity Tests/methods , Mutagens/toxicity , Real-Time Polymerase Chain Reaction/methods , Cell Line , Humans , Toxicogenetics
5.
Mutagenesis ; 31(4): 453-61, 2016 07.
Article in English | MEDLINE | ID: mdl-26980085

ABSTRACT

Prior to the downstream development of chemical substances, including pharmaceuticals and cosmetics, their influence on the genetic apparatus has to be tested. Several in vitro and in vivo assays have been developed to test for genotoxicity. In a first tier, a battery of two to three in vitro tests is recommended to cover mutagenicity, clastogenicity and aneugenicity as main endpoints. This regulatory in vitro test battery is known to have a high sensitivity, which is at the expense of the specificity. The high number of false positive in vitro results leads to excessive in vivo follow-up studies. In the case of cosmetics it may even induce the ban of the particular compound since in Europe the use of experimental animals is no longer allowed for cosmetics. In this article, an alternative approach to derisk a misleading positive Ames test is explored. Hereto we first tested the performance of five existing computational tools to predict the potential mutagenicity of a data set of 132 cosmetic compounds with a known genotoxicity profile. Furthermore, we present, as a proof-of-principle, a strategy in which a combination of computational tools and mechanistic information derived from in vitro transcriptomics analyses is used to derisk a misleading positive Ames test result. Our data shows that this strategy may represent a valuable tool in a weight-of-evidence approach to further evaluate a positive outcome in an Ames test.


Subject(s)
Computer Simulation , Gene Expression Profiling/methods , Mutagenicity Tests/methods , Computational Biology/methods , Cosmetics , Data Accuracy , Sensitivity and Specificity
6.
Methods Mol Biol ; 1250: 279-85, 2015.
Article in English | MEDLINE | ID: mdl-26272150

ABSTRACT

Cytochrome P450 enzymes are a diverse group of catalytic enzymes in the liver that are mainly responsible for the biotransformation of organic substances. Cytochrome P450 activity as well as both its induction and inhibition are key factors in drug biotransformation and can be involved in deactivation, activation, detoxification and toxification processes. Thus, the modulation of cytochrome P450 activity is an important parameter when evaluating the potential toxicity of chemical compounds using an in vitro system. The cytochrome P450 3A subfamily proteins are among the most important drug-metabolizing enzymes in human liver and are responsible for about half of all cytochrome P450-dependent drug oxidations. In vitro, these enzymes are active not only in primary human hepatocyte cultures, but also in differentiated human hepatoma HepaRG cells. The present protocol describes the culture of cryopreserved differentiated HepaRG cells and the evaluation of its cytochrome P450 activity upon exposure to a chemical compound using a commercially available luminogenic cytochrome P450 assay. This in vitro model can be used to monitor the induction and inhibition of cytochrome P450 3A following exposure to a particular test compound.


Subject(s)
Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Cell Culture Techniques , Cell Line, Tumor , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 Enzyme System/biosynthesis , Enzyme Induction/drug effects , Gene Expression , Genes, Reporter , Humans , Inactivation, Metabolic
7.
Mutagenesis ; 29(2): 115-21, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24435663

ABSTRACT

To evaluate the mutagenicity/genotoxicity of cosmetic ingredients at the regulatory level, usually a battery of three in vitro tests is applied. This battery, designed to be very sensitive, produces a high number of positive results, imposing the need for in vivo follow-up testing to clear the substance under study. In Europe, the use of experimental animals has become impossible for cosmetic ingredients due to the implementation of animal testing and marketing bans. Consequently, the possibility to 'de-risk' substances with positive in vitro results disappear and potentially safe cosmetic substances will be lost for the EU market unless currently used in vitro assays can be adapted or new non-animal mutagenicity/genotoxicity studies become available. Described strategies to improve the specificity of existing in vitro assays include optimisation of the used cell type and cytotoxicity assay and lowering of the applied top concentration. A reduction of the number of tests in the battery from three to two also has been suggested. In this study, the performance of the 'standard' in vitro mutagenicity/genotoxicity testing battery is analysed for a number of cosmetic ingredients. We composed a database with toxicological information on 249 cosmetic ingredients, mainly present on the Annexes of the European cosmetic legislation. Results revealed that the in vitro mutagenicity/genotoxicity tests showed a low specificity for the cosmetic ingredients concerned, comparable to the specificity published for chemicals. Non-confirmed or 'misleading' positive results amounted up to 93% for the in vitro test batteries. The cell type and top concentrations did not have a major impact on the specificity. With respect to cytotoxicity determinations, different end points were used, potentially leading to different testing concentrations, suggesting the need for a consensus in this matter. Overall, the results of this retrospective analysis point to an urgent need of better regulatory strategies to assess the potential mutagenicity/genotoxicity of cosmetic ingredients.


Subject(s)
Cosmetics/adverse effects , Cosmetics/standards , Databases as Topic/legislation & jurisprudence , Government Regulation , Mutagenicity Tests/methods , European Union , False Positive Reactions , Mutagenicity Tests/standards , Retrospective Studies , Toxicity Tests
8.
Toxicol In Vitro ; 28(1): 54-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24095862

ABSTRACT

The currently used regulatory in vitro mutagenicity/genotoxicity test battery has a high sensitivity for detecting genotoxicants, but it suffers from a large number of irrelevant positive results (i.e. low specificity) thereby imposing the need for additional follow-up by in vitro and/or in vivo genotoxicity tests. This could have a major impact on the cosmetic industry in Europe, seen the imposed animal testing and marketing bans on cosmetics and their ingredients. Afflicted, but safe substances could therefore be lost. Using the example of triclosan, a cosmetic preservative, we describe here the potential applicability of a human toxicogenomics-based in vitro assay as a potential mechanistically based follow-up test for positive in vitro genotoxicity results. Triclosan shows a positive in vitro chromosomal aberration test, but is negative during in vivo follow-up tests. Toxicogenomics analysis unequivocally shows that triclosan is identified as a compound acting through non-DNA reactive mechanisms. This proof-of-principle study illustrates the potential of genome-wide transcriptomics data in combination with in vitro experimentation as a possible weight-of-evidence follow-up approach for de-risking a positive outcome in a standard mutagenicity/genotoxicity battery. As such a substantial number of cosmetic compounds wrongly identified as genotoxicants could be saved for the future.


Subject(s)
Cosmetics/toxicity , Mutagenicity Tests/methods , Toxicogenetics/methods , Triclosan/toxicity , Anti-Infective Agents, Local/toxicity , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Chromosome Aberrations/chemically induced , False Positive Reactions , Humans , Liver Neoplasms/metabolism
9.
Carcinogenesis ; 34(6): 1393-402, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23393228

ABSTRACT

As the conventional approach to assess the potential of a chemical to cause cancer in humans still includes the 2-year rodent carcinogenicity bioassay, development of alternative methodologies is needed. In the present study, the transcriptomics responses following exposure to genotoxic (GTX) and non-genotoxic (NGTX) hepatocarcinogens and non-carcinogens (NC) in five liver-based in vitro models, namely conventional and epigenetically stabilized cultures of primary rat hepatocytes, the human hepatoma-derived cell lines HepaRG and HepG2 and human embryonic stem cell-derived hepatocyte-like cells, are examined. For full characterization of the systems, several bioinformatics approaches are employed including gene-based, ConsensusPathDB-based and classification analysis. They provide convincingly similar outcomes, namely that upon exposure to carcinogens, the HepaRG generates a gene classifier (a gene classifier is defined as a selected set of characteristic gene signatures capable of distinguishing GTX, NGTX carcinogens and NC) able to discriminate the GTX carcinogens from the NGTX carcinogens and NC. The other in vitro models also yield cancer-relevant characteristic gene groups for the GTX exposure, but some genes are also deregulated by the NGTX carcinogens and NC. Irrespective of the tested in vitro model, the most uniformly expressed pathways following GTX exposure are the p53 and those that are subsequently induced. The NGTX carcinogens triggered no characteristic cancer-relevant gene profiles in all liver-based in vitro systems. In conclusion, liver-based in vitro models coupled with transcriptomics techniques, especially in the case when the HepaRG cell line is used, represent valuable tools for obtaining insight into the mechanism of action and identification of GTX carcinogens.


Subject(s)
Carcinogens/toxicity , Hepatocytes/drug effects , Liver/drug effects , Mutagens/toxicity , Transcriptome/drug effects , Animals , Carcinogens/pharmacology , Cell Line, Tumor , Embryonic Stem Cells/drug effects , Gene Expression/drug effects , Gene Expression Profiling , Hep G2 Cells , Humans , Liver Neoplasms , Mutagens/pharmacology , Rats , Rats, Sprague-Dawley , Tumor Suppressor Protein p53/drug effects
10.
Arch Toxicol ; 86(11): 1703-15, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23052194

ABSTRACT

The concept of mechanistic toxicogenomics implies that compound-induced changes in gene expression profiles provide valuable information about their mode of action. A growing number of research groups have presented evidence that whole-genome gene expression profiling techniques might be used as tools for in vivo and in vitro generation of gene signatures and elucidation of molecular mechanisms after exposure to toxic compounds. An important issue to be investigated is the in vivo relevance of in vitro-obtained data. In the current study, we compare the gene expression profiles generated in vitro, after exposing conventional and epigenetically stabilized primary rat hepatocytes to well-known genotoxic hepatocarcinogens (aflatoxin B1, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and 2-nitrofluorene) with those derived in vivo after oral exposure of rats to these compounds. Similar statistical tools were applied on both sets of data. The major molecular pathways affected in the in vivo setting were DNA damage, detoxification and cell survival response, as previously described. In the conventional hepatocyte cultures, two of the three genotoxicants showed quite similar responses as in vivo with respect to these pathways. The third compound (2-nitrofluorene) revealed in vitro response which was not observed in vivo. In the epigenetically stabilized hepatocytes, in contrast to what was expected, the responses were less relevant for the in vivo situation. This study highlights the importance of in vitro/in vivo comparison of data that are generated using in vitro models and shows that conventional primary rat hepatocyte cultures represent an appropriate in vitro model to retrieve mechanistic information on the exposure to genotoxicants.


Subject(s)
Gene Expression Profiling , Hepatocytes/drug effects , Mutagens/toxicity , Toxicogenetics/methods , Aflatoxin B1/toxicity , Animals , Carcinogens/toxicity , Cells, Cultured , DNA Damage/drug effects , Epigenesis, Genetic , Fluorenes/toxicity , Hepatocytes/physiology , Male , Mutagenicity Tests , Nitrosamines/toxicity , Oligonucleotide Array Sequence Analysis , Rats , Rats, Wistar
11.
Arch Toxicol ; 86(9): 1399-411, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22484513

ABSTRACT

At present, substantial efforts are focused on the development of in vitro assays coupled with "omics" technologies for the identification of carcinogenic substances as an alternative to the classical 2-year rodent carcinogenicity bioassay. A prerequisite for the eventual regulatory acceptance of such assays, however, is the in vivo relevance of the observed in vitro findings. In the current study, hepatocarcinogen-induced gene expression profiles generated after the exposure of conventional cultures of primary rat hepatocytes to three non-genotoxic carcinogens (methapyrilene hydrochloride, piperonyl butoxide, and Wy-14643), three genotoxic carcinogens (aflatoxin B1, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, and 2-nitrofluorene), and two non-carcinogens (nifedipine and clonidine) are compared with previously obtained in vivo data after oral administration for up to 14 days of the same hepatocarcinogens to rats. In addition to the comparison of deregulated genes and functions per compound between in vivo and in vitro models, the major discriminating cellular pathways found in vivo in livers of exposed rats were examined for deregulation in vitro. Further, in vivo-derived gene signatures for the identification of genotoxic versus non-genotoxic carcinogens are used to classify in vitro-tested hepatocarcinogens and non-carcinogens. In the primary hepatocyte cultures, two out of the three tested genotoxic carcinogens mimicked the in vivo-relevant DNA damage response and were correctly assessed. Exposure to the non-genotoxic hepatocarcinogens, however, triggered a relatively weak response in the in vitro system, with no clear similarities to in vivo. This study contributes to the further optimization of toxicogenomics predictive tools when applied in in vitro settings.


Subject(s)
Carcinogens/toxicity , Gene Expression Regulation, Neoplastic/drug effects , Hepatocytes/metabolism , Liver Neoplasms, Experimental/metabolism , Liver/metabolism , Mutagens/toxicity , Neoplasm Proteins/metabolism , Animals , Carcinogenicity Tests/methods , Carcinogens/pharmacology , Cell Cycle/drug effects , Cells, Cultured , DNA Damage , Gene Expression Profiling , Hepatocytes/drug effects , Liver/drug effects , Liver Neoplasms, Experimental/chemically induced , Male , Mutagens/pharmacology , Neoplasm Proteins/genetics , Oligonucleotide Array Sequence Analysis , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Rats, Wistar , Toxicogenetics/methods
12.
Crit Rev Toxicol ; 42(2): 91-106, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22141324

ABSTRACT

The 2-year rodent carcinogenicity bioassay evolved more than 40 years ago, and although it is complex, long lasting, expensive, and animal consuming, it is still the only generally accepted test for assessing the carcinogenicity of chemicals. Over time, different alternative approaches have been developed with the final goal to replace the bioassay. Unfortunately, at present, none of these strategies alone provides sufficient assurance of accurate prediction. In this review paper, we discuss the major advantages and pitfalls of the existing alternative methodologies to the carcinogenicity bioassay. Finally, based on the available scientific data in the public domain, we propose what we would like to call a "feasible integrated testing strategy" which incorporates some promising alternatives, providing at the same time information on the mechanism of action and the toxic nature of the compounds tested. It is, however, clear that the adoption of whatever "new" testing scheme should be considered with caution and its effectiveness should be experimentally demonstrated in advance by addressing a reasonable number of chemical carcinogens and non-carcinogens from a variety of structural and functional classes.


Subject(s)
Animal Testing Alternatives , Carcinogenicity Tests/methods , Carcinogens/toxicity , Mutagenicity Tests/methods , Animals , Animals, Genetically Modified , Biological Assay/methods , Cell Line , Cell Transformation, Neoplastic , Humans , Risk Assessment , Rodentia , Toxicogenetics/methods
SELECTION OF CITATIONS
SEARCH DETAIL