Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 3882, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36890286

ABSTRACT

We report on the growth and characterization of epitaxial YBa[Formula: see text]Cu[Formula: see text]O[Formula: see text] (YBCO) complex oxide thin films and related heterostructures exclusively by Pulsed Laser Deposition (PLD) and using first harmonic Nd:Y[Formula: see text]Al[Formula: see text]O[Formula: see text] (Nd:YAG) pulsed laser source ([Formula: see text] = 1064  nm). High-quality epitaxial YBCO thin film heterostructures display superconducting properties with transition temperature [Formula: see text] 80 K. Compared with the excimer lasers, when using Nd:YAG lasers, the optimal growth conditions are achieved at a large target-to-substrate distance d. These results clearly demonstrate the potential use of the first harmonic Nd:YAG laser source as an alternative to the excimer lasers for the PLD thin film community. Its compactness as well as the absence of any safety issues related to poisonous gas represent a major breakthrough in the deposition of complex multi-element compounds in form of thin films.

2.
ACS Appl Mater Interfaces ; 14(50): 55915-55924, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36508578

ABSTRACT

Within the emerging field of proton-conducting fuel cells, BaZr0.9Y0.1O3-δ (BZY10) is an attractive material due to its high conductivity and stability. The fundamentals of conduction in sintered pellets and thin films heterostructures have been explored in several studies; however, the role of crystallographic orientation, grains, and grain boundaries is poorly understood for proton conduction. This article reports proton conduction in a self-assembled multi-oriented BZY10 thin film grown on top of a (110) NdGaO3 substrate. The multiple orientations are composed of different lattices, which provide a platform to study the lattice-dependent conductivity through different orientations in the vicinity of grain boundary between them and the substrate. The crystalline stacking of each orientation is confirmed by X-ray diffraction analysis and scanning transmission electron microscopy. The transport measurements are carried out under different gas atmospheres. The highest conductivity of 3.08 × 10-3 S cm-1 at 400 °C is found under a wet H2 environment together with an increased lattice parameter of 4.208 Å, while under O2 and Ar environments, the film shows lower conductivity and lattice parameter. Our findings not only demonstrate the role of crystal lattice for conduction properties but also illustrate the importance of self-assembled strategies to achieve high proton conduction in BZY10 thin films.

3.
Small Methods ; 6(2): e2100932, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34951155

ABSTRACT

The reliability of semiconductor materials with electrical and optical properties are connected to their structures. The elastic strain field and tilt analysis of the crystal lattice, detectable by the variation in position and shape of the diffraction peaks, is used to quantify defects and investigate their mobility. The exploitation of high-resolution X-ray diffraction-based methods for the evaluation of structural defects in semiconductor materials and devices is reviewed. An efficient and non-destructive characterization is possible for structural parameters such as, lattice strain and tilt, layer composition and thickness, lattice mismatch, and dislocation density. The description of specific experimental diffraction geometries and scanning methods is provided. Today's X-ray diffraction based methods are evaluated and compared, also with respect to their applicability limits. The goal is to understand the close relationship between lattice strain and structural defects. For different material systems, the appropriate analytical methods are highlighted.

4.
J Appl Crystallogr ; 53(Pt 1): 58-68, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32047404

ABSTRACT

Silicon nanowire-based sensors find many applications in micro- and nano-electromechanical systems, thanks to their unique characteristics of flexibility and strength that emerge at the nanoscale. This work is the first study of this class of micro- and nano-fabricated silicon-based structures adopting the scanning X-ray diffraction microscopy technique for mapping the in-plane crystalline strain (∊044) and tilt of a device which includes pillars with suspended nanowires on a substrate. It is shown how the micro- and nanostructures of this new type of nanowire system are influenced by critical steps of the fabrication process, such as electron-beam lithography and deep reactive ion etching. X-ray analysis performed on the 044 reflection shows a very low level of lattice strain (<0.00025 Δd/d) but a significant degree of lattice tilt (up to 0.214°). This work imparts new insights into the crystal structure of micro- and nanomaterial-based sensors, and their relationship with critical steps of the fabrication process.

SELECTION OF CITATIONS
SEARCH DETAIL
...