Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 74(5): 936-950.e5, 2019 06 06.
Article in English | MEDLINE | ID: mdl-30975459

ABSTRACT

CRISPR-Cas systems enable microbial adaptive immunity and provide eukaryotic genome editing tools. These tools employ a single effector enzyme of type II or V CRISPR to generate RNA-guided, precise genome breaks. Here we demonstrate the feasibility of using type I CRISPR-Cas to effectively introduce a spectrum of long-range chromosomal deletions with a single RNA guide in human embryonic stem cells and HAP1 cells. Type I CRISPR systems rely on the multi-subunit ribonucleoprotein (RNP) complex Cascade to identify DNA targets and on the helicase-nuclease enzyme Cas3 to degrade DNA processively. With RNP delivery of T. fusca Cascade and Cas3, we obtained 13%-60% editing efficiency. Long-range PCR-based and high-throughput-sequencing-based lesion analyses reveal that a variety of deletions, ranging from a few hundred base pairs to 100 kilobases, are created upstream of the target site. These results highlight the potential utility of type I CRISPR-Cas for long-range genome manipulations and deletion screens in eukaryotes.


Subject(s)
CRISPR-Cas Systems/genetics , Human Embryonic Stem Cells , RNA, Guide, Kinetoplastida/genetics , Sequence Deletion/genetics , Endonucleases/chemistry , Endonucleases/genetics , Escherichia coli/genetics , Gene Editing/methods , Genome, Human/genetics , Genomics , Humans , Ribonucleoproteins/genetics
2.
Cell ; 175(4): 934-946.e15, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30343903

ABSTRACT

CRISPR-Cas systems confer an adaptive immunity against viruses. Following viral injection, Cas1-Cas2 integrates segments of the viral genome (spacers) into the CRISPR locus. In type I CRISPR-Cas systems, efficient "primed" spacer acquisition and viral degradation (interference) require both the Cascade complex and the Cas3 helicase/nuclease. Here, we present single-molecule characterization of the Thermobifida fusca (Tfu) primed acquisition complex (PAC). We show that TfuCascade rapidly samples non-specific DNA via facilitated one-dimensional diffusion. Cas3 loads at target-bound Cascade and the Cascade/Cas3 complex translocates via a looped DNA intermediate. Cascade/Cas3 complexes stall at diverse protein roadblocks, resulting in a double strand break at the stall site. In contrast, Cas1-Cas2 samples DNA transiently via 3D collisions. Moreover, Cas1-Cas2 associates with Cascade and translocates with Cascade/Cas3, forming the PAC. PACs can displace different protein roadblocks, suggesting a mechanism for long-range spacer acquisition. This work provides a molecular basis for the coordinated steps in CRISPR-based adaptive immunity.


Subject(s)
Actinomycetales/enzymology , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , CRISPR-Associated Proteins/chemistry , DNA, Viral/metabolism , Protein Multimerization , Single Molecule Imaging
3.
Science ; 361(6397)2018 07 06.
Article in English | MEDLINE | ID: mdl-29880725

ABSTRACT

Type I CRISPR-Cas system features a sequential target-searching and degradation process on double-stranded DNA by the RNA-guided Cascade (CRISPR associated complex for antiviral defense) complex and the nuclease-helicase fusion enzyme Cas3, respectively. Here, we present a 3.7-angstrom-resolution cryo-electron microscopy (cryo-EM) structure of the Type I-E Cascade/R-loop/Cas3 complex, poised to initiate DNA degradation. Cas3 distinguishes Cascade conformations and only captures the R-loop-forming Cascade, to avoid cleaving partially complementary targets. Its nuclease domain recruits the nontarget strand (NTS) DNA at a bulged region for the nicking of single-stranded DNA. An additional 4.7-angstrom-resolution cryo-EM structure captures the postnicking state, in which the severed NTS retracts to the helicase entrance, to be threaded for adenosine 5'-triphosphate-dependent processive degradation. These snapshots form the basis for understanding RNA-guided DNA degradation in Type I-E CRISPR-Cas systems.


Subject(s)
Actinobacteria/metabolism , Bacterial Proteins/chemistry , CRISPR-Associated Proteins/chemistry , DNA Breaks, Single-Stranded , DNA Fragmentation , DNA Helicases/chemistry , DNA/chemistry , RNA, Guide, Kinetoplastida/chemistry , Actinobacteria/genetics , Bacterial Proteins/genetics , CRISPR-Associated Proteins/genetics , Cryoelectron Microscopy , DNA/genetics , DNA Helicases/genetics , Nucleic Acid Conformation , Protein Conformation , RNA, Guide, Kinetoplastida/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...