Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
STAR Protoc ; 3(4): 101683, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36116075

ABSTRACT

Epithelial folding is a fundamental process where initially flat monolayers transform into functional 3D structures. This protocol details fabrication steps for a polycarbonate microfluidic platform which enables triggering epithelial folds that recapitulate stereotypical cell shape changes and folding-associated mechanical stresses. We describe the steps for cell seeding to form a monolayer on the chip, and subsequent approach to trigger calcium waves in the epithelial monolayer through local epithelial deformation. Lastly, we outline quantitative analysis steps of the epithelial response. For complete details on the use and execution of this protocol, please refer to Blonski et al. (2021).


Subject(s)
Calcium Signaling , Calcium , Microfluidics , Cell Shape , Stress, Mechanical
2.
Mol Biol Cell ; 32(16): 1409-1416, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34133212

ABSTRACT

A central challenge to the biology of development and disease is deciphering how individual cells process and respond to numerous biochemical and mechanical signals originating from the environment. Recent advances in genomic studies enabled the acquisition of information about population heterogeneity; however, these so far are poorly linked with the spatial heterogeneity of biochemical and mechanical cues. Whereas in vitro models offer superior control over spatiotemporal distribution of numerous mechanical parameters, researchers are limited by the lack of methods to select subpopulations of cells in order to understand how environmental heterogeneity directs the functional collective response. To circumvent these limitations, we present a method based on the use of photo convertible proteins, which when expressed within cells and activated with light, gives a stable fluorescence fingerprint enabling subsequent sorting and lysis for genomics analysis. Using this technique, we study the spatial distribution of genetic alterations on well-characterized local mechanical stimulation within the epithelial monolayer. Our method is an in vitro alternative to laser microdissection, which so far has found a broad application in ex vivo studies.


Subject(s)
Cytophotometry/methods , Genomics , Animals , Dogs , Flow Cytometry , Fluorescence , Gene Expression Profiling , Humans , Microfluidic Analytical Techniques , Sequence Analysis, RNA
3.
Biomed Opt Express ; 11(4): 2277-2297, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32341883

ABSTRACT

Coherent light scattered by tissues brings structural and dynamic information, at depth, that standard imaging techniques cannot reach. Dynamics of cells or sub-cellular elements can be measured thanks to dynamic light scattering in thin samples (single scattering regime) or thanks to diffusive wave spectroscopy in thick samples (diffusion regime). Here, we address the intermediate regime and provide an analytical relationship between scattered light fluctuations and the distribution of cell displacements as a function of time. We illustrate our method by characterizing cell motility inside half millimeter thick multicellular aggregates.

SELECTION OF CITATIONS
SEARCH DETAIL
...