Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Neurol ; 12: 699014, 2021.
Article in English | MEDLINE | ID: mdl-34526957

ABSTRACT

Objective: The current study seeks to illustrate potential early and objective neurophysiological biomarkers of neurodegenerative cognitive decline by evaluating features of brain network physiological performance and structure utilizing different modalities. Methods: This study included 17 clinically healthy individuals with self-reported cognitive decline (Subjective Cognitive Decline group, SCD, no objective finding of cognitive decline), 12 individuals diagnosed with amnestic Mild Cognitive Impairment (aMCI), 11 individuals diagnosed with Dementia, and 15 healthy subjects. All subjects underwent computerized cognitive performance testing, MRI scans including T1 for gray matter (GM) volume quantification, DTI for quantification of white matter (WM) microstructure fractional anisotropy (FA) and mean diffusivity (MD), and brain network function evaluation using DELPHI (TMS-EEG) measures of connectivity, excitability, and plasticity. Results: Both DELPHI analysis of network function and DTI analysis detected a significant decrease in connectivity, excitability, and WM integrity in the SCD group compared to healthy control (HC) subjects; a significant decrease was also noted for aMCI and Dementia groups compared to HC. In contrast, no significant decrease was observed in GM volume in the SCD group compared to healthy norms, a significant GM volume decrease was observed only in objectively cognitively impaired aMCI subjects and in dementia subjects. Conclusions: This study results suggest that objective direct measures of brain network physiology and WM integrity may provide early-stage biomarkers of neurodegenerative-related changes in subjects that have not yet displayed any other objective measurable cognitive or GM volume deficits which may facilitate early preventive care for neurodegenerative decline and dementia.

2.
Front Neurosci ; 14: 589107, 2020.
Article in English | MEDLINE | ID: mdl-33408607

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate brain white matter (WM) fibers connectivity damage in stroke and traumatic brain injury (TBI) subjects by direct electrophysiological imaging (DELPHI) that analyzes transcranial magnetic stimulation (TMS)-evoked potentials (TEPs). METHODS: The study included 123 participants, out of which 53 subjects with WM-related pathologies (39 stroke, 14 TBI) and 70 healthy age-related controls. All subjects underwent DELPHI brain network evaluations of TMS-electroencephalogram (EEG)-evoked potentials and diffusion tensor imaging (DTI) scans for quantification of WM microstructure fractional anisotropy (FA). RESULTS: DELPHI output measures show a significant difference between the healthy and stroke/TBI groups. A multidimensional approach was able to classify healthy from unhealthy with a balanced accuracy of 0.81 ± 0.02 and area under the curve (AUC) of 0.88 ± 0.01. Moreover, a multivariant regression model of DELPHI output measures achieved prediction of WM microstructure changes measured by FA with the highest correlations observed for fibers proximal to the stimulation area, such as frontal corpus callosum (r = 0.7 ± 0.02), anterior internal capsule (r = 0.7 ± 0.02), and fronto-occipital fasciculus (r = 0.65 ± 0.03). CONCLUSION: These results indicate that features of TMS-evoked response are correlated to WM microstructure changes observed in pathological conditions, such as stroke and TBI, and that a multidimensional approach combining these features in supervised learning methods serves as a strong indicator for abnormalities and changes in WM integrity.

3.
Front Aging Neurosci ; 11: 248, 2019.
Article in English | MEDLINE | ID: mdl-31551761

ABSTRACT

OBJECTIVE: Evaluation and monitoring of brain health throughout aging by direct electrophysiological imaging (DELPHI) which analyzes TMS (transcranial magnetic stimulation) evoked potentials. METHODS: Transcranial magnetic stimulation evoked potentials formation, coherence and history dependency, measured using electroencephalogram (EEG), was extracted from 80 healthy subjects in different age groups, 25-85 years old, and 20 subjects diagnosed with mild dementia (MD), over 70 years old. Subjects brain health was evaluated using MRI scans, neurocognitive evaluation, and computerized testing and compared to DELPHI analysis of brain network functionality. RESULTS: A significant decrease in signal coherence is observed with age in connectivity maps, mostly in inter-hemispheric temporal, and parietal areas. MD patients display a pronounced decrease in global and inter-hemispheric frontal connectivity compared to healthy controls. Early and late signal slope ratio also display a significant, age dependent, change with pronounced early slope, phase shift, between normal healthy aging, and MD. History dependent analysis demonstrates a binary step function classification of healthy brain vs. abnormal aging subjects mostly for late slope. DELPHI measures demonstrate high reproducibility with reliability coefficients of around 0.9. CONCLUSION: These results indicate that features of evoked response, as charge transfer, slopes of response, and plasticity are altered during abnormal aging and that these fundamental properties of network functionality can be directly evaluated and monitored using DELPHI.

4.
Nat Neurosci ; 16(5): 587-95, 2013 May.
Article in English | MEDLINE | ID: mdl-23563578

ABSTRACT

Accumulated genetic evidence suggests that attenuation of the ratio between cerebral amyloid-ß Aß40 and Aß42 isoforms is central to familial Alzheimer's disease (FAD) pathogenesis. However, FAD mutations account for only 1-2% of Alzheimer's disease cases, leaving the experience-dependent mechanisms regulating Aß40/42 an enigma. Here we explored regulation of Aß40/42 ratio by temporal spiking patterns in the rodent hippocampus. Spike bursts boosted Aß40/42 through a conformational change in presenilin1 (PS1), the catalytic subunit of γ-secretase, and subsequent increase in Aß40 production. Conversely, single spikes did not alter basal PS1 conformation and Aß40/42. Burst-induced PS1 conformational shift was mediated by means of Ca(2+)-dependent synaptic vesicle exocytosis. Presynaptic inhibition in vitro and visual deprivation in vivo augmented synaptic and Aß40/42 facilitation by bursts in the hippocampus. Thus, burst probability and transfer properties of synapses represent fundamental features regulating Aß40/42 by experience and may contribute to the initiation of the common, sporadic Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides/metabolism , Peptide Fragments/metabolism , Presenilin-1/metabolism , Animals , Animals, Newborn , Calcium Channel Blockers/pharmacology , Cells, Cultured , Dark Adaptation/physiology , Dose-Response Relationship, Drug , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Female , Hippocampus/cytology , In Vitro Techniques , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurotransmitter Agents/pharmacology , Presenilin-1/chemistry , Presenilin-1/genetics , Protein Conformation , Rats , Rats, Wistar , Visual Cortex/cytology
5.
Neuron ; 67(2): 253-67, 2010 Jul 29.
Article in English | MEDLINE | ID: mdl-20670833

ABSTRACT

Presynaptic GABA(B) receptor (GABA(B)R) heterodimers are composed of GB(1a)/GB(2) subunits and critically influence synaptic and cognitive functions. Here, we explored local GABA(B)R activation by integrating optical tools for monitoring receptor conformation and synaptic vesicle release at individual presynaptic boutons of hippocampal neurons. Utilizing fluorescence resonance energy transfer (FRET) spectroscopy, we detected a wide range of FRET values for CFP/YFP-tagged GB(1a)/GB(2) receptors that negatively correlated with release probabilities at single synapses. High FRET of GABA(B)Rs associated with low release probability. Notably, pharmacological manipulations that either reduced or increased basal receptor activation decreased intersynapse variability of GB(1a)/GB(2) receptor conformation. Despite variability along axons, presynaptic GABA(B)R tone was dendrite specific, having a greater impact on synapses at highly innervated proximal branches. Prolonged neuronal inactivity reduced basal receptor activation, leading to homeostatic augmentation of release probability. Our findings suggest that local variations in basal GABA concentration are a major determinant of GB(1a)/GB(2) conformational variability, which contributes to heterogeneity of neurotransmitter release at hippocampal synapses.


Subject(s)
CA1 Region, Hippocampal/cytology , Neurons/metabolism , Probability , Receptors, GABA-B/metabolism , Synapses/metabolism , gamma-Aminobutyric Acid/metabolism , Analysis of Variance , Anesthetics, Local/pharmacology , Animals , Animals, Newborn , Baclofen/pharmacology , Calcium/metabolism , Cells, Cultured , Dose-Response Relationship, Drug , Egtazic Acid/analogs & derivatives , Egtazic Acid/metabolism , Electric Stimulation , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , GABA Agents/pharmacology , In Vitro Techniques , Microscopy, Confocal/methods , Neurons/drug effects , Nipecotic Acids/pharmacology , Organophosphorus Compounds/pharmacology , Potassium Chloride/pharmacology , Presynaptic Terminals/drug effects , Presynaptic Terminals/metabolism , Protein Conformation/drug effects , Pyridinium Compounds/metabolism , Quaternary Ammonium Compounds/metabolism , Rats , Rats, Wistar , Receptors, GABA-B/chemistry , Synapses/drug effects , Tetrodotoxin/pharmacology
6.
Nat Neurosci ; 12(12): 1567-76, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19935655

ABSTRACT

Accumulation of cerebral amyloid-beta peptide (Abeta) is essential for developing synaptic and cognitive deficits in Alzheimer's disease. However, the physiological functions of Abeta, as well as the primary mechanisms that initiate early Abeta-mediated synaptic dysfunctions, remain largely unknown. Here we examine the acute effects of endogenously released Abeta peptides on synaptic transfer at single presynaptic terminals and synaptic connections in rodent hippocampal cultures and slices. Increasing extracellular Abeta by inhibiting its degradation enhanced release probability, boosting ongoing activity in the hippocampal network. Presynaptic enhancement mediated by Abeta was found to depend on the history of synaptic activation, with lower impact at higher firing rates. Notably, both elevation and reduction in Abeta levels attenuated short-term synaptic facilitation during bursts in excitatory synaptic connections. These observations suggest that endogenous Abeta peptides have a crucial role in activity-dependent regulation of synaptic vesicle release and might point to the primary pathological events that lead to compensatory synapse loss in Alzheimer's disease.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , CA1 Region, Hippocampal/metabolism , Presynaptic Terminals/metabolism , Synaptic Vesicles/physiology , Alzheimer Disease/pathology , Amyloid beta-Peptides/antagonists & inhibitors , Animals , CA1 Region, Hippocampal/cytology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Membrane Potentials/drug effects , Membrane Potentials/physiology , Neprilysin/metabolism , Neural Inhibition/physiology , Neuronal Plasticity/physiology , Organ Culture Techniques , Protease Inhibitors/pharmacology , Rats , Sodium Channel Blockers/pharmacology , Synaptic Transmission/physiology , Tetrodotoxin/pharmacology , Thiorphan/pharmacology
7.
Neurodegener Dis ; 5(3-4): 166-9, 2008.
Article in English | MEDLINE | ID: mdl-18322380

ABSTRACT

We presently investigated the pathological effects of prolonged inhibition of brain beta-amyloid (Abeta) degradation in vivo. The results obtained revealed that intracerebroventricular injection of the protease inhibitor phosphoramidon into wild-type mice for up to a month elevated the soluble and deposited brain Abeta levels and concomitantly induced the neurodegeneration of distinct hippocampal neurons as well as neuroinflammation. These findings reproduce pathological effects associated with the initial stages of the amyloid cascade and provide a novel model system for studying their underlying mechanisms.


Subject(s)
Amyloid/metabolism , Glycopeptides/administration & dosage , Protease Inhibitors/administration & dosage , Amyloid/genetics , Animals , Hippocampus/drug effects , Hippocampus/enzymology , Hippocampus/pathology , Injections, Intraventricular , Male , Mice , Mice, Inbred C57BL , Signal Transduction/drug effects , Signal Transduction/physiology
8.
J Neurochem ; 103(3): 1031-40, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17666042

ABSTRACT

The allele E4 of apolipoprotein E4 (apoE4), which is the most prevalent genetic risk factor of Alzheimer's disease (AD), inhibits synaptogenesis and neurogenesis and stimulates apoptosis in brains of apoE4 transgenic mice that have been exposed to an enriched environment. In the present study, we investigated the hypothesis that the brain activity-dependent impairments in neuronal plasticity, induced by apoE4, are mediated via the amyloid cascade. Importantly, we found that exposure of mice transgenic for either apoE4, or the Alzheimer's disease benign allele apoE3, to an enriched environment elevates similarly the hippocampal levels of amyloid-beta peptide (Abeta) and apoE of these mice, but that the degree of aggregation and spatial distribution of Abeta in these mice are markedly affected by the apoE genotype. Accordingly, environmental stimulation triggered the formation of extracellular plaque-like Abeta deposits and the accumulation of intra-neuronal oligomerized Abeta specifically in brains of apoE4 mice. Further experiments revealed that hippocampal dentate gyrus neurons are particularly susceptible to apoE4 and environmental stimulation and that these neurons are specifically enriched in both oligomerized Abeta and apoE. These findings show that the impairments in neuroplasticity which are induced by apoE4 following environmental stimulation are associated with the accumulation of intraneuronal Abeta and suggest that oligomerized Abeta mediates the synergistic pathological effects of apoE4 and environmental stimulation.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Apolipoprotein E4/metabolism , Brain/metabolism , Neurons/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Animals , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Apolipoprotein E4/genetics , Brain/pathology , Brain/physiopathology , Dentate Gyrus/metabolism , Dentate Gyrus/pathology , Dentate Gyrus/physiopathology , Environment Design , Genetic Predisposition to Disease/genetics , Genotype , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neuronal Plasticity/genetics , Neurons/pathology , Plaque, Amyloid/genetics , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Polymers
10.
J Alzheimers Dis ; 10(2-3): 291-301, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17119294

ABSTRACT

The amyloid-beta (Abeta) peptide is a major constituent of the brain senile plaques that characterize Alzheimer's disease (AD). Converging observations led to the formulation of the amyloid hypothesis whereby the accumulation of soluble aggregates and insoluble Abeta deposits is the primary event in AD pathogenesis. Furthermore, the apoE4 isoform of apolipoprotein E, a major prevalent genetic risk factor of AD, is associated with increased Abeta deposition. To investigate the initial stages of the amyloid cascade in vivo and how this is affected by apoE4, we studied the effects of prolonged inhibition and subsequent reactivation of the Abeta-degrading enzyme, neprilysin, on aggregation and deposition of Abeta in apoE transgenic and control mice. The results revealed that Abeta deposition in vivo is initiated by aggregation of Abeta42, which is followed by reversible deposition of both Abeta42 and Abeta40, along with growth of the deposits, and by their subsequent irreversible fibrillization. The initiation of Abeta42 deposition is accelerated isoform-specifically by apoE4, whereas the growth and dissolution of the Abeta deposits as well as their fibrillization are similarly stimulated by the various apoE isoforms. Interestingly, Abeta deposition was associated with increased gliosis, which may reflect early pathological interactions of beta with the brain's parenchyma.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Apolipoprotein E4/metabolism , Brain/metabolism , Alzheimer Disease/pathology , Animals , Apolipoprotein E3/metabolism , Brain/pathology , Cell Aggregation , Immunohistochemistry , Mice , Mice, Transgenic , Neprilysin/metabolism , Peptide Fragments/metabolism , Polymerase Chain Reaction
11.
Proc Natl Acad Sci U S A ; 101(38): 13909-14, 2004 Sep 21.
Article in English | MEDLINE | ID: mdl-15365176

ABSTRACT

The amyloid-beta (Abeta) peptide, a major pathological hallmark of Alzheimer's disease (AD), undergoes a cascade of interactions resulting in the formation of soluble aggregates and their conversion in the brain to insoluble deposits and mature senile plaques. Furthermore, the apoE4 isoform of apolipoprotein E (apoE), which is the major genetic risk factor of AD, is associated with increased Abeta deposition. It is not known how the different Abeta aggregates in the amyloid cascade are formed, contribute to the pathogenesis of AD, or are affected by apoE4. To investigate the initial aggregation stages underlying the amyloid cascade in vivo and how apoE affects them, we examined the effects of prolonged inhibition and subsequent reactivation of the Abeta-degrading protease neprilysin on deposition, disaggregation, and fibrillization of Abeta in apoE-transgenic and control mice. In control mice, intracerebroventricular infusion of thiorphan, which inhibits neprilysin, induced Abeta42 and Abeta40 deposition and fibrillization. On termination of thiorphan treatment, the number of Abeta deposits decreased, whereas the fibrillar Abeta deposits were unaffected. Similar treatments in apoE-deficient mice and mice transgenic for human apoE4 or apoE3 revealed that apoE4 enhances specifically the nucleation and aggregation of immunopositive Abeta deposits and that reversible disaggregation of these deposits and their irreversible conversion to fibrillar deposits are stimulated similarly by the different apoE isoforms. Deposition of Abeta and its enhancement by apoE4 were accompanied by increased astrogliosis both far from and near the Abeta deposits, suggesting that astrogliosis might be triggered by both insoluble and soluble Abeta aggregates.


Subject(s)
Amyloid beta-Peptides/metabolism , Amyloid/metabolism , Apolipoproteins E/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Disease Models, Animal , Humans , Mice , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...