Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Biomedicines ; 12(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38927417

ABSTRACT

Background: Although several prognostic factors for survival have been identified in glioblastoma, there are numerous other potential markers (such as hemoglobin) whose role has not yet been confirmed. The aim of this study was to evaluate a wide range of potential prognostic factors, including HIF-1α and hemoglobin levels, for survival in glioblastoma. A secondary aim was to determine whether hemoglobin levels were associated with HIF-1α expression. Methods: A retrospective study of 136 patients treated for glioblastoma at our institution between 2012 and 2021 was performed. Cox univariate and multivariate analyses were carried out. Kaplan-Meier survival curves were generated. In addition, bivariate non-parametric correlation analyses were performed for key variables. Results: Median survival was 11.9 months (range: 0-119.4). According to the univariate analysis, 13 variables were significantly associated with survival: age, performance status, extent of surgery, tumor depth, tumor size, epilepsy, postoperative chemoradiotherapy, IDH mutations, CD44, HIF-1α, HIF-1ß, vimentin, and PDFGR. According to the multivariate regression analysis, only four variables remained significantly associated with survival: age, extent of surgery, epilepsy, and HIF-1α expression. No significant association was observed between hemoglobin levels (low <120 g/L in females or <140 g/L in males vs. high ≥120 or ≥140 g/L) and survival or HIF-1α/HIF-1ß expression. Conclusions: In this retrospective study of patients with glioblastoma, four variables-age, extent of surgery, HIF-1α expression, and epilepsy-were significant prognostic factors for survival. Hemoglobin levels were not significantly associated with survival or HIF-1α expression. Although hypoxia is a well-recognized component of the glioblastoma microenvironment, more research is needed to understand the pathogenesis of onset tumor hypoxia and treatment implication.

2.
Eur J Med Chem ; 258: 115611, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37421887

ABSTRACT

Phenotypic screening of an in-house library of small molecule purine derivatives against Mycobacterium tuberculosis (Mtb) led to the identification of 2-morpholino-7-(naphthalen-2-ylmethyl)-1,7-dihydro-6H-purin-6-one 10 as a potent antimycobacterial agent with MIC99 of 4 µM. Thorough structure-activity relationship studies revealed the importance of 7-(naphthalen-2-ylmethyl) substitution for antimycobacterial activity, yet opened the possibility of structural modifications at positions 2 and 6 of the purine core. As the result, optimized analogues with 6-amino or ethylamino substitution 56 and 64, respectively, were developed. These compounds showed strong in vitro antimycobacterial activity with MIC of 1 µM against Mtb H37Rv and against several clinically isolated drug-resistant strains, had limited toxicity to mammalian cell lines, medium clearance with respect to phase I metabolic deactivation (27 and 16.8 µL/min/mg), sufficient aqueous solubility (>90 µM) and high plasma stability. Interestingly, investigated purines, including compounds 56 and 64, lacked activity against a panel of Gram-negative and Gram-positive bacterial strains, indicating a specific mycobacterial molecular target. To investigate the mechanism of action, Mtb mutants resistant to hit compound 10 were isolated and their genomes were sequenced. Mutations were found in dprE1 (Rv3790), which encodes decaprenylphosphoryl-ß-d-ribose oxidase DprE1, enzyme essential for the biosynthesis of arabinose, a vital component of the mycobacterial cell wall. Inhibition of DprE1 by 2,6-disubstituted 7-(naphthalen-2-ylmethyl)-7H-purines was proved using radiolabelling experiments in Mtb H37Rv in vitro. Finally, structure-binding relationships between selected purines and DprE1 using molecular modeling studies in tandem with molecular dynamic simulations revealed the key structural features for effective drug-target interaction.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Animals , Antitubercular Agents/chemistry , Alcohol Oxidoreductases/chemistry , Purines/pharmacology , Structure-Activity Relationship , Molecular Dynamics Simulation , Bacterial Proteins/metabolism , Mammals/metabolism
3.
Eur J Med Chem ; 258: 115593, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37390508

ABSTRACT

17ß-hydroxysteroid dehydrogenase type 10 (17ß-HSD10) is a multifunctional mitochondrial enzyme and putative drug target for the treatment of various pathologies including Alzheimer's disease or some types of hormone-dependent cancer. In this study, a series of new benzothiazolylurea-based inhibitors were developed based on the structure-activity relationship (SAR) study of previously published compounds and predictions of their physico-chemical properties. This led to the identification of several submicromolar inhibitors (IC50 ∼0.3 µM), the most potent compounds within the benzothiazolylurea class known to date. The positive interaction with 17ß-HSD10 was further confirmed by differential scanning fluorimetry and the best molecules were found to be cell penetrable. In addition, the best compounds weren't found to have additional effects for mitochondrial off-targets and cytotoxic or neurotoxic effects. The two most potent inhibitors 9 and 11 were selected for in vivo pharmacokinetic study after intravenous and peroral administration. Although the pharmacokinetic results were not fully conclusive, it seemed that compound 9 was bioavailable after peroral administration and could penetrate into the brain (brain-plasma ratio 0.56).


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/drug therapy , Structure-Activity Relationship , 17-Hydroxysteroid Dehydrogenases , Brain/metabolism , Enzyme Inhibitors/chemistry
4.
Eur J Med Chem ; 252: 115301, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36996715

ABSTRACT

Butyrylcholinesterase (BChE) is one of the most frequently implicated enzymes in the advanced stage of Alzheimer's disease (AD). As part of our endeavors to develop new drug candidates for AD, we have focused on natural template structures, namely the Amaryllidaceae alkaloids carltonine A and B endowed with high BChE selectivity. Herein, we report the design, synthesis, and in vitro evaluation of 57 novel highly selective human BChE (hBChE) inhibitors. Most synthesized compounds showed hBChE inhibition potency ranging from micromolar to low nanomolar scale. Compounds that revealed BChE inhibition below 100 nM were selected for detailed biological investigation. The CNS-targeted profile of the presented compounds was confirmed theoretically by calculating the BBB score algorithm, these data were corroborated by determining the permeability in vitro using PAMPA-assay for the most active derivatives. The study highlighted compounds 87 (hBChE IC50 = 3.8 ± 0.2 nM) and 88 (hBChE IC50 = 5.7 ± 1.5 nM) as the top-ranked BChE inhibitors. Compounds revealed negligible cytotoxicity for the human neuroblastoma (SH-SY5Y) and hepatocellular carcinoma (HepG2) cell lines compared to BChE inhibitory potential. A crystallographic study was performed to inspect the binding mode of compound 87, revealing essential interactions between 87 and hBChE active site. In addition, multidimensional QSAR analyses were applied to determine the relationship between chemical structures and biological activity in a dataset of designed agents. Compound 87 is a promising lead compound with potential implications for treating the late stages of AD.


Subject(s)
Alzheimer Disease , Amaryllidaceae Alkaloids , Neuroblastoma , Humans , Butyrylcholinesterase/metabolism , Amaryllidaceae Alkaloids/pharmacology , Neuroblastoma/drug therapy , Cholinesterase Inhibitors/chemistry , Alzheimer Disease/drug therapy , Acetylcholinesterase/metabolism , Molecular Docking Simulation , Structure-Activity Relationship
5.
J Enzyme Inhib Med Chem ; 37(1): 2605-2620, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36131624

ABSTRACT

Twenty-four novel compounds bearing tetrahydroacridine and N-propargyl moieties have been designed, synthesised, and evaluated in vitro for their anti-cholinesterase and anti-monoamine oxidase activities. Propargyltacrine 23 (IC50 = 21 nM) was the most potent acetylcholinesterase (AChE) inhibitor, compound 20 (IC50 = 78 nM) showed the best inhibitory human butyrylcholinesterase (hBChE) profile, and ligand 21 afforded equipotent and significant values on both ChEs (human AChE [hAChE]: IC50 = 0.095 ± 0.001 µM; hBChE: IC50 = 0.093 ± 0.003 µM). Regarding MAO inhibition, compounds 7, 15, and 25 demonstrated the highest inhibitory potential towards hMAO-B (IC50 = 163, 40, and 170 nM, respectively). In all, compounds 7, 15, 20, 21, 23, and 25 exhibiting the most balanced pharmacological profile, were submitted to permeability and cell viability tests. As a result, 7-phenoxy-N-(prop-2-yn-1-yl)-1,2,3,4-tetrahydroacridin-9-amine hydrochloride (15) has been identified as a permeable agent that shows a balanced pharmacological profile [IC50 (hAChE) = 1.472 ± 0.024 µM; IC50 (hBChE) = 0.659 ± 0.077 µM; IC50 (hMAO-B) = 40.39 ± 5.98 nM], and consequently, as a new hit-ligand that deserves further investigation, in particular in vivo analyses, as the preliminary cell viability test results reported here suggest that this is a relatively safe therapeutic agent.


Subject(s)
Alzheimer Disease , Butyrylcholinesterase , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Amines , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Drug Design , Humans , Ligands , Monoamine Oxidase , Monoamine Oxidase Inhibitors/pharmacology , Oxidoreductases , Structure-Activity Relationship , Tacrine/therapeutic use
6.
Toxicol In Vitro ; 85: 105463, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36041654

ABSTRACT

Insecticides represent the most crucial element in the integrated management approach to malaria and other vector-borne diseases. The evolution of insect resistance to long-used substances and the toxicity of organophosphates (OPs) and carbamates are the main factors contributing to the development of new, environmentally safe pesticides. In our work, fourteen compounds of 7-methoxytacrine-tacrine heterodimers were tested for their insecticidal effect. Compounds were evaluated in vitro on insect acetylcholinesterase from Anopheles gambiae (AgAChE) and Musca domestica (MdAChE). The evaluation was executed in parallel with testing on human erythrocyte acetylcholinesterase (HssAChE) and human butyrylcholinesterase (HssBChE) using a modified Ellman's method. Compound efficacy was determined as IC50 values for the respective enzymes and selectivity indexes were expressed to compare the interspecies selectivity. Docking studies were performed to predict the binding modes of selected compounds. K1328 and K1329 provided high HssAChE/AgAChE selectivity outperforming standard pesticides (carbofuran and bendiocarb), and thus can be considered as suitable lead structure for novel anticholinesterase insecticides.


Subject(s)
Anopheles , Carbofuran , Insecticides , Animals , Humans , Cholinesterase Inhibitors/toxicity , Acetylcholinesterase/metabolism , Butyrylcholinesterase , Tacrine , Mosquito Vectors , Anopheles/metabolism , Carbamates , Organophosphates
7.
Med Res Rev ; 42(5): 1822-1855, 2022 09.
Article in English | MEDLINE | ID: mdl-35575048

ABSTRACT

Cyclophilin D (CypD) is a key regulator of mitochondrial permeability transition pore (mPTP) opening. This pathophysiological phenomenon is associated with the development of several human diseases, including ischemia-reperfusion injury and neurodegeneration. Blocking mPTP opening through CypD inhibition could be a novel and promising therapeutic approach for these conditions. While numerous CypD inhibitors have been discovered to date, none have been introduced into clinical practice, mostly owing to their high toxicity, unfavorable pharmacokinetics, and low selectivity for CypD over other cyclophilins. This review summarizes current knowledge of CypD inhibitors, with a particular focus on small-molecule compounds with regard to their in vitro activity, their selectivity for CypD, and their binding mode within the enzyme's active site. Finally, approaches for improving the molecular design of CypD inhibitors are discussed.


Subject(s)
Mitochondrial Diseases , Mitochondrial Membrane Transport Proteins , Peptidyl-Prolyl Isomerase F , Peptidyl-Prolyl Isomerase F/antagonists & inhibitors , Humans , Mitochondria/metabolism , Mitochondrial Diseases/drug therapy , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore
8.
J Biomol Struct Dyn ; 40(21): 11291-11319, 2022.
Article in English | MEDLINE | ID: mdl-34323654

ABSTRACT

Nowadays, advanced computational chemistry methods offer various strategies for revealing prospective hit structures in drug development essentially through accurate binding free energy predictions. After the era of molecular docking and quantitative structure-activity relationships, much interest has been lately oriented to perturbed molecular dynamic approaches like replica exchange with solute tempering and free energy perturbation (REST/FEP) and the potential of the mean force with adaptive biasing and accelerated weight histograms (PMF/AWH). Both of these receptor-based techniques can exploit exascale CPU&GPU supercomputers to achieve high throughput performance. In this fundamental study, we have compared the predictive power of a panel of supercomputerized molecular modelling methods to distinguish the major binding modes and the corresponding binding free energies of a promising tacrine related potential antialzheimerics in human acetylcholinesterase. The binding free energies were estimated using flexible molecular docking, molecular mechanics/generalized Born surface area/Poisson-Boltzmann surface area (MM/GBSA/PBSA), transmutation REST/FEP with 12 x 5 ns/λ windows, annihilation FEP with 20 x 5 ns/λ steps, PMF with weight histogram analysis method (WHAM) and 40 x 5 ns samples, and PMF/AWH with 10 x 100 ns replicas. Confrontation of the classical approaches such as canonical molecular dynamics and molecular docking with alchemical calculations and steered molecular dynamics enabled us to show how large errors in ΔG predictions can be expected if these in silico methods are employed in the elucidation of a common case of enzyme inhibition.Communicated by Ramaswamy H. Sarma.


Subject(s)
Acetylcholinesterase , Tacrine , Humans , Molecular Docking Simulation , Tacrine/pharmacology , Thermodynamics , Prospective Studies , Molecular Dynamics Simulation , Protein Binding
9.
Materials (Basel) ; 14(18)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34576686

ABSTRACT

Polydioxanone (PPDX), as an FDA approved polymer in tissue engineering, is an important component of some promising medical devices, e.g., biodegradable stents. The hydrolytic degradation of polydioxanone stents plays a key role in the safety and efficacy of treatment. A new fast and convenient method to quantitatively evaluate the hydrolytic degradation of PPDX stent material was developed. PPDX esophageal stents were degraded in phosphate-buffered saline for 24 weeks. For the first time, the changes in Raman spectra during PPDX biodegradation have been investigated here. The level of PPDX hydrolytic degradation was determined from the Raman spectra by calculating the area under the 1732 cm-1 peak shoulder. Raman spectroscopy, unlike Fourier transform infrared (FT-IR) spectroscopy, is also sensitive enough to monitor the decrease in the dye content in the stents during the degradation. Observation by a scanning electron microscope showed gradually growing cracks, eventually leading to the stent disintegration. The material crystallinity was increasing during the first 16 weeks, suggesting preferential degradation of the amorphous phase. Our results show a new easy and reliable way to evaluate the progression of PPDX hydrolytic degradation. The proposed approach can be useful for further studies on the behavior of PPDX materials, and for clinical practice.

10.
Sensors (Basel) ; 21(16)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34451018

ABSTRACT

Gait disorders accompany a number of neurological and musculoskeletal disorders that significantly reduce the quality of life. Motion sensors enable high-quality modelling of gait stereotypes. However, they produce large volumes of data, the evaluation of which is a challenge. In this publication, we compare different data reduction methods and classification of reduced data for use in clinical practice. The best accuracy achieved between a group of healthy individuals and patients with ataxic gait extracted from the records of 43 participants (23 ataxic, 20 healthy), forming 418 segments of straight gait pattern, is 98% by random forest classifier preprocessed by t-distributed stochastic neighbour embedding.


Subject(s)
Gait Disorders, Neurologic , Quality of Life , Ataxia/diagnosis , Gait , Humans
11.
Int J Nanomedicine ; 16: 3407-3427, 2021.
Article in English | MEDLINE | ID: mdl-34040371

ABSTRACT

PURPOSE: Plasmonic photothermal cancer therapy by gold nanorods (GNRs) emerges as a promising tool for cancer treatment. The goal of this study was to design cationic oligoethylene glycol (OEG) compounds varying in hydrophobicity and molecular electrostatic potential as ligand shells of GNRs. Three series of ligands with different length of OEG chain (ethylene glycol units = 3, 4, 5) and variants of quaternary ammonium salts (QAS) as terminal functional group were synthesized and compared to a prototypical quaternary ammonium ligand with alkyl chain - (16-mercaptohexadecyl)trimethylammonium bromide (MTAB). METHODS: Step-by-step research approach starting with the preparation of compounds characterized by NMR and HRMS spectra, GNRs ligand exchange evaluation through characterization of cytotoxicity and GNRs cellular uptake was used. A method quantifying the reshaping of GNRs was applied to determine the effect of ligand structure on the heat transport from GNRs under fs-laser irradiation. RESULTS: Fourteen out of 18 synthesized OEG compounds successfully stabilized GNRs in the water. The colloidal stability of prepared GNRs in the cell culture medium decreased with the number of OEG units. In contrast, the cellular uptake of OEG+GNRs by HeLa cells increased with the length of OEG chain while the structure of the QAS group showed a minor role. Compared to MTAB, more hydrophilic OEG compounds exhibited nearly two order of magnitude lower cytotoxicity in free state and provided efficient cellular uptake of GNRs close to the level of MTAB. Regarding photothermal properties, OEG compounds evoked the photothermal reshaping of GNRs at lower peak fluence (14.8 mJ/cm2) of femtosecond laser irradiation than the alkanethiol MTAB. CONCLUSION: OEG+GNRs appear to be optimal for clinical applications with systemic administration of NPs not-requiring irradiation at high laser intensity such as drug delivery and photothermal therapy inducing apoptosis.


Subject(s)
Gold/chemistry , Gold/metabolism , Nanotubes/chemistry , Polyethylene Glycols/chemistry , Quaternary Ammonium Compounds/chemistry , Temperature , Biological Transport , Colloids , Drug Stability , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Ligands
12.
Molecules ; 26(8)2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33918638

ABSTRACT

Gastrointestinal side effects of donepezil, including dyspepsia, nausea, vomiting or diarrhea, occur in 20-30% of patients. The pathogenesis of these dysmotility associated disorders has not been fully clarified yet. Pharmacokinetic parameters of donepezil and its active metabolite 6-O-desmethyldonepezil were investigated in experimental pigs with and without small intestinal injury induced by dextran sodium sulfate (DSS). Morphological features of this injury were evaluated by a video capsule endoscopy. The effect of a single and repeated doses of donepezil on gastric myoelectric activity was assessed. Both DSS-induced small intestinal injury and prolonged small intestinal transit time caused higher plasma concentrations of donepezil in experimental pigs. This has an important implication for clinical practice in humans, with a need to reduce doses of the drug if an underlying gastrointestinal disease is present. Donepezil had an undesirable impact on porcine myoelectric activity. This effect was further aggravated by DSS-induced small intestinal injury. These findings can explain donepezil-associated dyspepsia in humans.


Subject(s)
Donepezil/pharmacokinetics , Gastrointestinal Tract/pathology , Gastrointestinal Tract/physiopathology , Indans/metabolism , Metabolome , Myoelectric Complex, Migrating , Piperidines/metabolism , Stomach/physiopathology , Animals , Capsule Endoscopy , Dextran Sulfate , Donepezil/chemistry , Donepezil/pharmacology , Female , Gastrointestinal Tract/drug effects , Metabolome/drug effects , Myoelectric Complex, Migrating/drug effects , Stomach/drug effects , Swine
13.
Eur J Med Chem ; 219: 113434, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-33892271

ABSTRACT

Tacrine is a classic drug whose efficacy against neurodegenerative diseases is still shrouded in mystery. It seems that besides its inhibitory effect on cholinesterases, the clinical benefit is co-determined by NMDAR-antagonizing activity. Our previous data showed that the direct inhibitory effect of tacrine, as well as its 7-methoxy derivative (7-MEOTA), is ensured via a "foot-in-the-door" open-channel blockage, and that interestingly both tacrine and 7-MEOTA are slightly more potent at the GluN1/GluN2A receptors when compared with the GluN1/GluN2B receptors. Here, we report that in a series of 30 novel tacrine derivatives, designed for assessment of structure-activity relationship, blocking efficacy differs among different compounds and receptors using electrophysiology with HEK293 cells expressing the defined types of NMDARs. Selected compounds (4 and 5) potently inhibited both GluN1/GluN2A and GluN1/GluN2B receptors; other compounds (7 and 23) more effectively inhibited the GluN1/GluN2B receptors; or the GluN1/GluN2A receptors (21 and 28). QSAR study revealed statistically significant model for the data obtained for inhibition of GluN1/Glu2B at -60 mV expressed as IC50 values, and for relative inhibition of GluN1/Glu2A at +40 mV caused by a concentration of 100 µM. The models can be utilized for a ligand-based virtual screening to detect potential candidates for inhibition of GluN1/Glu2A and/or GluN1/Glu2B subtypes. Using in vivo experiments in rats we observed that unlike MK-801, the tested novel compounds did not induce hyperlocomotion in open field, and also did not impair prepulse inhibition of startle response, suggesting minimal induction of psychotomimetic side effects. We conclude that tacrine derivatives are promising compounds since they are centrally available subtype-specific inhibitors of the NMDARs without detrimental behavioral side-effects.


Subject(s)
Cholinesterase Inhibitors/chemistry , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Tacrine/chemistry , Acetylcholinesterase/chemistry , Acetylcholinesterase/genetics , Acetylcholinesterase/metabolism , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/metabolism , Cholinesterase Inhibitors/pharmacology , Dogs , Drug Design , Half-Life , Humans , Locomotion/drug effects , Male , Membrane Potentials/drug effects , Mice , Mice, Inbred ICR , Quantitative Structure-Activity Relationship , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Tacrine/metabolism , Tacrine/pharmacology
14.
Biochem Pharmacol ; 186: 114460, 2021 04.
Article in English | MEDLINE | ID: mdl-33571502

ABSTRACT

N-methyl-D-aspartaterecepro receptor (NMDARs) are a subclass of glutamate receptors, which play an essential role in excitatory neurotransmission, but their excessive overactivation by glutamate leads to excitotoxicity. NMDARs are hence a valid pharmacological target for the treatment of neurodegenerative disorders; however, novel drugs targeting NMDARs are often associated with specific psychotic side effects and abuse potential. Motivated by currently available treatment against neurodegenerative diseases involving the inhibitors of acetylcholinesterase (AChE) and NMDARs, administered also in combination, we developed a dually-acting compound 7-phenoxytacrine (7-PhO-THA) and evaluated its neuropsychopharmacological and drug-like properties for potential therapeutic use. Indeed, we have confirmed the dual potency of 7-PhO-THA, i.e. potent and balanced inhibition of both AChE and NMDARs. We discovered that it selectively inhibits the GluN1/GluN2B subtype of NMDARs via an ifenprodil-binding site, in addition to its voltage-dependent inhibitory effect at both GluN1/GluN2A and GluN1/GluN2B subtypes of NMDARs. Furthermore, whereas NMDA-induced lesion of the dorsal hippocampus confirmed potent anti-excitotoxic and neuroprotective efficacy, behavioral observations showed also a cholinergic component manifesting mainly in decreased hyperlocomotion. From the point of view of behavioral side effects, 7-PhO-THA managed to avoid these, notably those analogous to symptoms of schizophrenia. Thus, CNS availability and the overall behavioral profile are promising for subsequent investigation of therapeutic use.


Subject(s)
Neuroprotective Agents/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Tacrine/pharmacology , Animals , HEK293 Cells , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Male , Neuroprotective Agents/chemistry , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism , Tacrine/chemistry
15.
Bioorg Chem ; 107: 104596, 2021 02.
Article in English | MEDLINE | ID: mdl-33421953

ABSTRACT

A series of tacrine - benzothiazole hybrids incorporate inhibitors of acetylcholinesterase (AChE), amyloid ß (Aß) aggregation and mitochondrial enzyme ABAD, whose interaction with Aß leads to mitochondrial dysfunction, into a single molecule. In vitro, several of 25 final compounds exerted excellent anti-AChE properties and interesting capabilities to block Aß aggregation. The best derivative of the series could be considered 10w that was found to be highly potent and selective towards AChE with the IC50 value in nanomolar range. Moreover, the same drug candidate exerted absolutely the best results of the series against ABAD, decreasing its activity by 23% at 100 µM concentration. Regarding the cytotoxicity profile of highlighted compound, it roughly matched that of its parent compound - 6-chlorotacrine. Finally, 10w was forwarded for in vivo scopolamine-induced amnesia experiment consisting of Morris Water Maze test, where it demonstrated mild procognitive effect. Taking into account all in vitro and in vivo data, highlighted derivative 10w could be considered as the lead structure worthy of further investigation.


Subject(s)
Alzheimer Disease/drug therapy , Benzothiazoles/pharmacology , Cholinergic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Neuroprotective Agents/pharmacology , Tacrine/pharmacology , 3-Hydroxyacyl CoA Dehydrogenases/antagonists & inhibitors , 3-Hydroxyacyl CoA Dehydrogenases/metabolism , Acetylcholinesterase/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Benzothiazoles/chemistry , Cholinergic Agents/chemical synthesis , Cholinergic Agents/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Protein Aggregates/drug effects , Structure-Activity Relationship , Tacrine/chemistry
16.
Bioorg Chem ; 103: 104179, 2020 10.
Article in English | MEDLINE | ID: mdl-32891860

ABSTRACT

YNT-185 is the first known small molecule acting as orexin 2 receptor (OX2R) agonist with implication to narcolepsy treatment, served as a template scaffold in generating a small set of seven compounds with predictive affinity to OX2R. The design of the new small molecules was driven mostly by improving physicochemical properties of the parent drug YNT-185 in parallel with in silico studies, later suggesting their favorable binding modes within the active site of OX2R. We obtained seven new potential OX2R binders that were evaluated in vitro for their CNS availability, cytotoxicity, and behavior pattern on OX2R. Out of them, 15 emerged as the most potent modulator of OX2R, which, contrary to YNT-185, displayed inverse mode of action, i.e. antagonist profile. 15 was also submitted to an in vivo experiment revealing its ability to permeate through BBB into the brain with a short half-life.


Subject(s)
Aniline Compounds/therapeutic use , Benzamides/therapeutic use , Orexin Receptors/therapeutic use , Sleep Initiation and Maintenance Disorders/drug therapy , Aniline Compounds/pharmacology , Benzamides/pharmacology , Humans , Molecular Structure
17.
Eur J Med Chem ; 206: 112584, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32853858

ABSTRACT

Quaternary ammonium salts (QASs) have been widely used for disinfection purposes because of their low price, high efficacy and low human toxicity for decades. However, precise mechanisms of action nor the powerful versatile agent against all antimicrobial species are known. In this study we have prepared 43 novel N-alkyl monoquaternary ammonium salts including 7 N,N-dialkyl monoquaternary ammonium salts differing bearing alkyl chain either of 12, 14 or 16 carbons. Together with 15 already published QASs we have studied the antimicrobial efficacy of all water-soluble compounds together with standard benzalkonium salts against Gram-positive (G+) and Gram-negative (G-) bacteria, anaerobic spore-forming Cl. difficile, yeasts, filamentous fungi and enveloped Varicella zoster virus (VZV). To address the mechanism of action, lipophilicity seems to be a key parameter which determines antimicrobial efficacy, however, exceptions are likely to occur and therefore QSAR analysis on the efficacy against G+ and G- bacteria was applied. We showed that antibacterial activity is higher when the molecule is larger, more lipophilic, less polar, and contains fewer oxygen atoms, fewer methyl groups bound to heteroatoms or fewer hydrogen atoms bound to polarized carbon atoms. In addition, from an application point of view, we have formulated mixtures, on the basis of obtained efficiency of individual compounds, in order to receive wide-spectrum agent. All formulated mixtures completely eradicated tested G+ and G- strains, including the multidrug-resistant P. aeruginosa as well as in case of yeasts. However, effect on A. fumigatus, Cl. difficile and VZV the exposition towards mixture resulted in significant reduction only. Finally, 3 out of 4 formulated mixtures were safer than reference commercial agent based on benzalkonium salts only in the skin irritation test using reconstructed human epidermidis.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Quantitative Structure-Activity Relationship , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Alkylation , Anti-Infective Agents/adverse effects , Humans , Microbial Sensitivity Tests , Quaternary Ammonium Compounds/adverse effects , Skin/drug effects
18.
Eur J Med Chem ; 203: 112593, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32688201

ABSTRACT

Berberine, a naturally occurring compound, possesses an interesting multipotent pharmacological profile potentially applicable for Alzheimer's disease (AD) treatment. In this study, a series of novel 22 berberine derivatives was developed and tested in vitro. Berberine core was substituted at position 9-O of its aromatic ring region. All the hybrids under the study revealed multi-targeted profile inhibiting prolyl oligopeptidase, acetylcholinesterase and butyrylcholinesterase highlighting 4a, 4g, 4j, 4l and 4s possessing balanced activities in the micromolar range. The top-ranked candidates in terms of the most pronounced potency against POP, AChE and BChE can be classified as 4d, 4u and 4v, bearing 4-methylbenzyl, (naphthalen-2-yl)methylene and 1-phenoxyethyl moieties, respectively. In vitro data were corroborated by detailed kinetic analysis of the selected lead molecules. 4d, 4u and 4v were also inspected for their potential to inhibit aggregation of two abberant proteins in AD, namely amyloid beta and tau, indicating their potential disease-modifying properties. To explain the results of our study, we carried out docking simulation to the active sites of the respective enzyme with the best berberine derivatives, along with QSAR study. We also investigated compounds' potential permeability through blood-brain barrier by applying parallel artificial membrane permeation assay and addressed their cytotoxicity profile.


Subject(s)
Berberine/chemistry , Berberine/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterases/metabolism , Drug Design , Prolyl Oligopeptidases/antagonists & inhibitors , Berberine/metabolism , Blood-Brain Barrier/metabolism , Cell Line, Tumor , Cholinesterase Inhibitors/metabolism , Humans
19.
Molecules ; 25(9)2020 May 11.
Article in English | MEDLINE | ID: mdl-32403238

ABSTRACT

Nosocomial infections, which greatly increase morbidity among hospitalized patients, together with growing antibiotic resistance still encourage many researchers to search for novel antimicrobial compounds. Picolinium salts with different lengths of alkyl chains (C12, C14, C16) were prepared by Menshutkin-like reaction and evaluated with respect to their biological activity, i.e., lipophilicity and critical micellar concentration. Picolinium salts with C14 and C16 side chains achieved similar or even better results when in terms of antimicrobial efficacy than benzalkoniums; notably, their fungicidal efficiency was substantially more potent. The position of the methyl substituent on the aromatic ring does not seem to affect antimicrobial activity, in contrast to the effect of length of the N-alkyl chain. Concurrently, picolinium salts exhibited satisfactory low cytotoxicity against mammalian cells, i.e., lower than that of benzalkonium compounds, which are considered as safe.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antiviral Agents/pharmacology , Picolinic Acids/chemistry , Picolinic Acids/pharmacology , Quaternary Ammonium Compounds/chemistry , Animals , CHO Cells , Candida/drug effects , Cell Survival/drug effects , Cricetulus , Fungi/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Herpesvirus 3, Human/drug effects , Microbial Sensitivity Tests , Picolinic Acids/chemical synthesis , Quaternary Ammonium Compounds/pharmacology , Structure-Activity Relationship , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology
20.
Int J Mol Sci ; 21(6)2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32192199

ABSTRACT

Human 17ß-hydroxysteroid dehydrogenase type 10 is a multifunctional protein involved in many enzymatic and structural processes within mitochondria. This enzyme was suggested to be involved in several neurological diseases, e.g., mental retardation, Parkinson's disease, or Alzheimer's disease, in which it was shown to interact with the amyloid-beta peptide. We prepared approximately 60 new compounds based on a benzothiazolyl scaffold and evaluated their inhibitory ability and mechanism of action. The most potent inhibitors contained 3-chloro and 4-hydroxy substitution on the phenyl ring moiety, a small substituent at position 6 on the benzothiazole moiety, and the two moieties were connected via a urea linker (4at, 4bb, and 4bg). These compounds exhibited IC50 values of 1-2 µM and showed an uncompetitive mechanism of action with respect to the substrate, acetoacetyl-CoA. These uncompetitive benzothiazolyl inhibitors of 17ß-hydroxysteroid dehydrogenase type 10 are promising compounds for potential drugs for neurodegenerative diseases that warrant further research and development.


Subject(s)
3-Hydroxyacyl CoA Dehydrogenases/antagonists & inhibitors , Benzothiazoles/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Urea/chemistry , Urea/pharmacology , 3-Hydroxyacyl CoA Dehydrogenases/chemistry , Alzheimer Disease/drug therapy , Enzyme Activation , Humans , Kinetics , Molecular Structure , Recombinant Proteins , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...