Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 25(27): 17943-17951, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37376968

ABSTRACT

Due to the pronounced effect of the confined environment on the photochemical properties of 4-hydroxybenzylidene imidazolinone (HBI), a GFP-related chromophore, imidazolidinone and imidazothiazolone analogues have been studied as fluorescent probes. Their photoisomerization and their thermal reversion were studied under 365-nm-irradiation, resulting in observation of an enthalpy-entropy compensation effect. Theoretical studies were carried out to shed light on the thermal reversion mechanism. Moreover, photophysical studies of benzylidene imidazothiazolone in the presence of dsDNA revealed fluorescence enhancement. The prepared compounds could be considered as a valuable tool for the detailed investigation of physicochemical, biochemical, or biological systems.


Subject(s)
Fluorescent Dyes , Green Fluorescent Proteins/chemistry , Fluorescence , Thermodynamics , Entropy
2.
Nanoscale Horiz ; 7(3): 267-275, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-34908075

ABSTRACT

Developments in the field of nanoplasmonics have the potential to advance applications from information processing and telecommunications to light-based sensing. Traditionally, nanoscale noble metals such as gold and silver have been used to achieve the targeted enhancements in light-matter interactions that result from the presence of localized surface plasmons (LSPs). However, interest has recently shifted to intrinsically doped semiconductor nanocrystals (NCs) for their ability to display LSP resonances (LSPRs) over a much broader spectral range, including the infrared (IR). Among semiconducting plasmonic NCs, spinel metal oxides (sp-MOs) are an emerging class of materials with distinct advantages in accessing the telecommunications bands in the IR and affording useful environmental stability. Here, we report the plasmonic properties of Fe3O4 sp-MO NCs, known previously only for their magnetic functionality, and demonstrate their ability to modify the light-emission properties of telecom-emitting quantum dots (QDs). We establish the synthetic conditions for tuning sp-MO NC size, composition and doping characteristics, resulting in unprecedented tunability of electronic behavior and plasmonic response over 450 nm. In particular, with diameter-dependent variations in free-electron concentration across the Fe3O4 NC series, we introduce a strong NC size dependency onto the optical response. In addition, our observation of plasmonics-enhanced decay rates from telecom-emitting QDs reveals Purcell enhancement factors for simple plasmonic-spacer-emitter sandwich structures up to 51-fold, which are comparable to values achieved previously only for emitters in the visible range coupled with conventional noble metal NCs.

3.
ACS Nano ; 15(1): 575-587, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33381968

ABSTRACT

We synthesized PbS/CdS core/shell quantum dots (QDs) to have functional single-emitter properties for room-temperature, solid-state operation in the telecom O and S bands. Two shell-growth methods-cation exchange and successive ionic layer adsorption and reaction (SILAR)-were employed to prepare QD heterostructures with shells of 2-16 monolayers. PbS/CdS QDs were sufficiently bright and stable to resolve photoluminescence (PL) spectra representing both bands from single nanocrystals using standard detection methods, and for a QD emitting in the O-band a second-order correlation function showed strong photon antibunching, important steps toward demonstrating the utility of lead chalcogenide QDs as single-photon emitters (SPEs). Irrespective of type, few telecom-SPEs exist that are capable of such room-temperature operation. Access to single-QD spectra enabled a direct assessment of spectral line width, which was ∼70-90 meV compared to much broader ensemble spectra (∼300 meV). We show inhomogeneous broadening results from dispersity in PbS core sizes that increases dramatically with extended cation exchange. Quantum yields (QYs) are negatively impacted at thick shells (>6 monolayers) and, especially, by SILAR-growth conditions. Time-resolved PL measurements revealed that, with SILAR, initially single-exponential PL-decays transition to biexponential, with opening of nonradiative carrier-recombination channels. Radiative decay times are, overall, longer for core/shell QDs compared to PbS cores, which we demonstrate can be partially attributed to some core/shell sizes occupying a quasi-type II electron-hole localization regime. Finally, we demonstrate that shell engineering and the use of lower laser-excitation powers can afford significantly suppressed blinking and photobleaching. However, dependence on shell thickness comes at a cost of less-than-optimal brightness, with implications for both materials and experimental design.

4.
J Am Chem Soc ; 142(10): 4769-4783, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32073843

ABSTRACT

Photophysics tunability through alteration of framework aperture (metal-organic framework (MOF) = variable; guest = constant) was probed for the first time in comparison with previously explored concepts (MOF = constant; guest = variable). In particular, analysis of the confinement effect on a photophysical response of integrated 5-(3-chlorobenzylidene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one (Cl-BI) chromophore allowed us to establish a photophysics-aperture relationship. To shed light on the observed correlation, the framework confined environment was replicated using a molecular cage, Pd6(TPT)4 (TPT = 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine), thus allowing for utilization of crystallography, spectroscopy, and theoretical simulations to reveal the effect a confined space has on the chromophore's molecular conformation (including disruption of strong hydrogen bonding and novel conformer formation) and any associated changes on a photophysical response. Furthermore, the chosen Cl-oHBI@Pd6(TPT)4 (Cl-oHBI = 5-(5-chloro-2-hydroxybenzylidene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one, chromophore) system was applied as a tool for targeted cargo delivery of a chromophore to the confined space of DNA, which resulted in promotion of chromophore-DNA interactions through a well-established intercalation mechanism. Moreover, the developed principles were applied toward utilizing a HBI-based chromophore as a fluorescent probe on the example of macrophage cells. For the first time, suppression of non-radiative decay pathways of a chromophore was tested by anchoring the chromophore to a framework metal node, portending a potential avenue to develop an alternative to natural biomarkers. Overall, these studies are among the first attempts to demonstrate the unrevealed potential of a confined scaffold environment for tailoring a material's photophysical response.


Subject(s)
DNA/chemistry , Fluorescent Dyes/chemistry , Imidazoles/chemistry , Metal-Organic Frameworks/chemistry , Triazines/chemistry , Fluorescent Dyes/radiation effects , HeLa Cells , Humans , Imidazoles/radiation effects , Intercalating Agents/chemistry , Intercalating Agents/radiation effects , Light , Molecular Conformation
5.
Inorg Chem ; 59(1): 179-183, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31260280

ABSTRACT

For the first time, we report the ability to control radionuclide species release kinetics in metal-organic frameworks (MOFs) as a function of postsynthetic capping linker installation, which is essential for understanding MOF potential as viable radionuclide wasteform materials or versatile platforms for sensing, leaching, and radionuclide sequestration. The radiation damage of prepared frameworks under γ radiation has also been studied. We envision that the presented studies are the first steps toward utilization of the reported scaffolds for more efficient nuclear waste administration.

6.
J Am Chem Soc ; 141(29): 11628-11640, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31276404

ABSTRACT

Thermodynamic studies of actinide-containing metal-organic frameworks (An-MOFs), reported herein for the first time, are a step toward addressing challenges related to effective nuclear waste administration. In addition to An-MOF thermochemistry, enthalpies of formation were determined for the organic linkers, 2,2'-dimethylbiphenyl-4,4'-dicarboxylic acid (H2Me2BPDC) and biphenyl-4,4'-dicarboxylic acid (H2BPDC), which are commonly used building blocks for MOF preparation. The electronic structure of the first example of An-MOF with mixed-metal AnAn'-nodes was influenced through coordination of transition metals as shown by the density of states near the Fermi edge, changes in the Tauc plot, conductivity measurements, and theoretical calculations. The "structural memory" effect (i.e., solvent-directed crystalline-amorphous-crystalline structural dynamism) was demonstrated as a function of node coordination degree, which is the number of organic linkers per metal node. Remarkable three-month water stability was reported for Th-containing frameworks herein, and the mechanism is also considered for improvement of the behavior of a U-based framework in water. Mechanistic aspects of capping linker installation were highlighted through crystallographic characterization of the intermediate, and theoretical calculations of free energies of formation (ΔGf) for U- and Th-MOFs with 10- and 12-coordinated secondary building units (SBUs) were performed to elucidate experimentally observed transformations during the installation processes. Overall, these results are the first thermochemical, electronic, and mechanistic insights for a relatively young class of actinide-containing frameworks.

7.
J Am Chem Soc ; 141(13): 5350-5358, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30840822

ABSTRACT

Electronic structure modulation of metal-organic frameworks (MOFs) through the connection of linker "wires" as a function of an external stimulus is reported for the first time. The established correlation between MOF electronic properties and photoisomerization kinetics as well as changes in an absorption profile is unprecedented for extended well-defined structures containing coordinatively integrated photoresponsive linkers. The presented studies were carried out on both single crystal and bulk powder with preservation of framework integrity. An LED-containing electric circuit, in which the switching behavior was driven by the changes in MOF electronic profile, was built for visualization of experimental findings. The demonstrated concept could be used as a blueprint for development of stimuli-responsive materials with dynamically controlled electronic behavior.

8.
ACS Appl Mater Interfaces ; 10(30): 25754-25762, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30028121

ABSTRACT

Organic chromophores that exhibit aggregation-induced emission (AIE) are of interest for applications in displays, lighting, and sensing, because they can maintain efficient emission at high molecular concentrations in the solid state. Such advantages over conventional chromophores could allow thinner conversion layers of AIE chromophores to be realized, with benefits in terms of the efficiency of the optical outcoupling, thermal management, and response times. However, it is difficult to create large-area optical quality thin films of efficiently performing AIE chromophores. Here, we demonstrate that this can be achieved by using a surface-anchored metal-organic framework (SURMOF) thin film coating as a host substrate, into which the tetraphenylethylene (TPE)-based AIE chromophore can be printed. We demonstrate that the SURMOF constrains the AIE-chromophore molecular conformation, affording efficient performance even at low loading densities in the SURMOF. As the loading density of the AIE chromophore in the SURMOF is increased, its absorption and emission spectra are tuned due to increased interaction between AIE molecules, but the high photoluminescent quantum yield (PLQY = 50% for this AIE chromophore) is maintained. Lastly, we demonstrate that patterns of the AIE chromophore with 70 µm feature sizes can be easily created by inkjet printing onto the SURMOF substrate. These results foreshadow novel possibilities for the creation of patterned phosphor thin films utilizing AIE chromophores for display or lighting applications.

9.
Angew Chem Int Ed Engl ; 57(35): 11310-11315, 2018 Aug 27.
Article in English | MEDLINE | ID: mdl-29974583

ABSTRACT

We report the first examples of purely organic donor-acceptor materials with integrated π-bowls (πBs) that combine not only crystallinity and high surface areas but also exhibit tunable electronic properties, resulting in a four-orders-of-magnitude conductivity enhancement in comparison with the parent framework. In addition to the first report of alkyne-azide cycloaddition utilized for corannulene immobilization in the solid state, we also probed the charge transfer rate within the Marcus theory as a function of mutual πB orientation for the first time, as well as shed light on the density of states near the Fermi edge. These studies could foreshadow new avenues for πB utilization for the development of optoelectronic devices or a route for highly efficient porous electrodes.

10.
J Am Chem Soc ; 140(24): 7611-7622, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29807417

ABSTRACT

Stimuli-responsive materials are vital for addressing emerging demands in the advanced technology sector as well as current industrial challenges. Here, we report for the first time that coordinative integration of photoresponsive building blocks possessing photochromic spiropyran and diarylethene moieties within a rigid scaffold of metal-organic frameworks (MOFs) could control photophysics, in particular, cycloreversion kinetics, with a level of control that is not accessible in the solid state or solution. On the series of photoactive materials, we demonstrated for the first time that photoisomerization rates of photochromic compounds could be tuned within almost 2 orders of magnitude. Moreover, cycloreversion rates of photoresponsive derivatives could be modulated as a function of the framework structure. Furthermore, through MOF engineering we were able to achieve complete isomerization for coordinatively immobilized spiropyran derivatives, typically exhibiting limited photoswitching behavior in the solid state. For instance, spectroscopic analysis revealed that the novel monosubstituted spiropyran derivative grafted to the backbone of the MOF pillar exhibits a remarkable photoisomerization rate of 0.16 s-1, typical for cycloreversion in solution. We also applied the acquired fundamental principles toward mapping of changes in material properties, which could provide a pathway for monitoring material aging or structural deterioration.

11.
Chem Soc Rev ; 47(13): 4710-4728, 2018 Jul 02.
Article in English | MEDLINE | ID: mdl-29546889

ABSTRACT

In this review, we highlight how recent advances achieved in the fields of photochemistry and photophysics of metal-organic frameworks (MOFs) could be applied towards the engineering of next generation MOF-based sensing devices. In addition to high surface area and structural tunability, which are crucial for efficient sensor development, progress in the field of MOF-based sensors could rely on the combination of MOF light-harvesting ability, understanding energy transfer processes within a framework, and application of MOF-based photocatalysis towards sensing enhancement. All photophysical concepts could be integrated within one material to improve efficiency and selectivity of sensing devices. Thus, the focus of this review is shifted towards a "beyond the pores" approach, which could foreshadow new guidelines for sensor engineering.

12.
Chem Commun (Camb) ; 54(50): 6472-6483, 2018 Jun 19.
Article in English | MEDLINE | ID: mdl-29445780

ABSTRACT

In this review, we highlight how recent advances in the field of actinide structural chemistry of metal-organic frameworks (MOFs) could be utilized towards investigations relative to efficient nuclear waste administration, driven by the interest towards development of novel actinide-containing architectures as well as concerns regarding environmental pollution and nuclear waste storage. We attempt to perform a comprehensive analysis of more than 100 crystal structures of the existing An (U,Th)-based MOFs to establish a correlation between structural density and wt% of actinide and bridge structural motifs common for natural minerals with ones typically observed in the solution chemistry of actinides. In addition to structural considerations, we showcase the benefits of MOF modularity and porosity towards the stepwise building of hierarchical material complexity and the capture of nuclear fission products, such as technetium and iodine. We expect that these facets not only contribute to the fundamental science of actinide chemistry, but also could foreshadow pathways for more efficient nuclear waste management.

13.
J Am Chem Soc ; 139(46): 16852-16861, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29069547

ABSTRACT

Growing necessity for efficient nuclear waste management is a driving force for development of alternative architectures toward fundamental understanding of mechanisms involved in actinide (An) integration inside extended structures. In this manuscript, metal-organic frameworks (MOFs) were investigated as a model system for engineering radionuclide containing materials through utilization of unprecedented MOF modularity, which cannot be replicated in any other type of materials. Through the implementation of recent synthetic advances in the MOF field, hierarchical complexity of An-materials was built stepwise, which was only feasible due to preparation of the first examples of actinide-based frameworks with "unsaturated" metal nodes. The first successful attempts of solid-state metathesis and metal node extension in An-MOFs are reported, and the results of the former approach revealed drastic differences in chemical behavior of extended structures versus molecular species. Successful utilization of MOF modularity also allowed us to structurally characterize the first example of bimetallic An-An nodes. To the best of our knowledge, through combination of solid-state metathesis, guest incorporation, and capping linker installation, we were able to achieve the highest Th wt % in mono- and biactinide frameworks with minimal structural density. Overall, the combination of a multistep synthetic approach with homogeneous actinide distribution and moderate solvothermal conditions could make MOFs an exceptionally powerful tool to address fundamental questions responsible for chemical behavior of An-based extended structures and, therefore, shed light on possible optimization of nuclear waste administration.

14.
Chem Commun (Camb) ; 53(53): 7361-7364, 2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28580471

ABSTRACT

Photophysics and dynamics of chromophores with a benzylidene imidazolinone core, responsible for emission of green fluorescent protein variants, were studied as a function of host topology by three approaches. Coordinative, non-coordinative, and "fastened" immobilization were utilized to study chromophore emission. Variable-temperature quadrupolar spin-echo 2H NMR spectra are reported.

15.
Angew Chem Int Ed Engl ; 56(16): 4525-4529, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28332256

ABSTRACT

We report the first example of a donor-acceptor corannulene-containing hybrid material with rapid ligand-to-ligand energy transfer (ET). Additionally, we provide the first time-resolved photoluminescence (PL) data for any corannulene-based compounds in the solid state. Comprehensive analysis of PL data in combination with theoretical calculations of donor-acceptor exciton coupling was employed to estimate ET rate and efficiency in the prepared material. The ligand-to-ligand ET rate calculated using two models is comparable with that observed in fullerene-containing materials, which are generally considered for molecular electronics development. Thus, the presented studies not only demonstrate the possibility of merging the intrinsic properties of π-bowls, specifically corannulene derivatives, with the versatility of crystalline hybrid scaffolds, but could also foreshadow the engineering of a novel class of hierarchical corannulene-based hybrid materials for optoelectronic devices.

16.
J Am Chem Soc ; 139(14): 5201-5209, 2017 Apr 12.
Article in English | MEDLINE | ID: mdl-28316244

ABSTRACT

The development of porous well-defined hybrid materials (e.g., metal-organic frameworks or MOFs) will add a new dimension to a wide number of applications ranging from supercapacitors and electrodes to "smart" membranes and thermoelectrics. From this perspective, the understanding and tailoring of the electronic properties of MOFs are key fundamental challenges that could unlock the full potential of these materials. In this work, we focused on the fundamental insights responsible for the electronic properties of three distinct classes of bimetallic systems, Mx-yM'y-MOFs, MxM'y-MOFs, and Mx(ligand-M'y)-MOFs, in which the second metal (M') incorporation occurs through (i) metal (M) replacement in the framework nodes (type I), (ii) metal node extension (type II), and (iii) metal coordination to the organic ligand (type III), respectively. We employed microwave conductivity, X-ray photoelectron spectroscopy, diffuse reflectance spectroscopy, powder X-ray diffraction, inductively coupled plasma atomic emission spectroscopy, pressed-pellet conductivity, and theoretical modeling to shed light on the key factors responsible for the tunability of MOF electronic structures. Experimental prescreening of MOFs was performed based on changes in the density of electronic states near the Fermi edge, which was used as a starting point for further selection of suitable MOFs. As a result, we demonstrated that the tailoring of MOF electronic properties could be performed as a function of metal node engineering, framework topology, and/or the presence of unsaturated metal sites while preserving framework porosity and structural integrity. These studies unveil the possible pathways for transforming the electronic properties of MOFs from insulating to semiconducting, as well as provide a blueprint for the development of hybrid porous materials with desirable electronic structures.

17.
Angew Chem Int Ed Engl ; 55(31): 9070-4, 2016 07 25.
Article in English | MEDLINE | ID: mdl-27265385

ABSTRACT

Herein, we report the first example of a crystalline metal-donor-fullerene framework, in which control of the donor-fullerene mutual orientation was achieved through chemical bond formation, in particular, by metal coordination. The (13) C cross-polarization magic-angle spinning NMR spectroscopy, X-ray diffraction, and time-resolved fluorescence spectroscopy were performed for comprehensive structural analysis and energy-transfer (ET) studies of the fulleretic donor-acceptor scaffold. Furthermore, in combination with photoluminescence measurements, the theoretical calculations of the spectral overlap function, Förster radius, excitation energies, and band structure were employed to elucidate the photophysical and ET processes in the prepared fulleretic material. We envision that the well-defined fulleretic donor-acceptor materials could contribute not only to the basic science of fullerene chemistry but would also be used towards effective development of organic photovoltaics and molecular electronics.

18.
Inorg Chem ; 55(15): 7257-64, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27304253

ABSTRACT

Engineering of novel systems capable of efficient energy capture and transfer in a predesigned pathway could potentially boost applications varying from organic photovoltaics to catalytic platforms and have implications for energy sustainability and green chemistry. While light-harvesting properties of different materials have been studied for decades, recently, there has been great progress in the understanding and modeling of short- and long-range energy transfer processes through utilization of metal-organic frameworks (MOFs). In this Forum Article, the recent advances in efficient multiple-chromophore coupling in well-defined metal-organic materials through mimicking a protein system possessing near 100% energy transfer are discussed. Utilization of a MOF as an efficient replica of a protein ß-barrel to maintain chromophore emission was also demonstrated. Furthermore, we established a novel dependence of a photophysical response on an electronic configuration for chromophores with the benzylidene imidazolinone core. For that, we prepared 16 chromophores, in which the benzylidene imidazolinone core was modified with electron-donating and electron-withdrawing substituents. To establish the structure-dependent photophysical properties of the prepared chromophores, 11 novel molecular structures were determined by single-crystal X-ray diffraction. These findings allow one to predict the chromophore emission profile inside a rigid framework as a function of the substituent, a key parameter for achieving the spectral overlap necessary to study and increase resonance energy transfer efficiency in MOF-based materials.


Subject(s)
Metal-Organic Frameworks/chemistry , Benzyl Compounds/chemistry , Crystallography, X-Ray , Cytochrome b Group/chemistry , Energy Transfer , Escherichia coli Proteins/chemistry , Green Fluorescent Proteins/chemistry , Imidazolines/chemistry
19.
Angew Chem Int Ed Engl ; 55(6): 2195-9, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26694541

ABSTRACT

A porous crystalline corannulene-containing scaffold, which combines the periodicity, dimensionality, and structural modularity of hybrid frameworks with the intrinsic properties of redox-active π-bowls, has been prepared. Single-crystal and powder X-ray diffraction, ab initio density functional theory computations, gas sorption analysis, fluorescence spectroscopy, and cyclic voltammetry were employed to study the properties of the novel corannulene derivatives and the buckybowl-based hybrid materials. X-ray diffraction studies revealed the preservation of the corannulene bowl inside the prepared rigid matrix, which offers the unique opportunity to extend the scaffold dimensionality through the buckybowl curvature. Merging the inherent properties of hybrid frameworks with the intrinsic properties of π-bowls opens a new avenue for preparing redox-active materials and potentially improving charge transport in the scaffold.

20.
Angew Chem Int Ed Engl ; 54(46): 13639-43, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26377245

ABSTRACT

Efficient multiple-chromophore coupling in a crystalline metal-organic scaffold was achieved by mimicking a protein system possessing 100% energy-transfer (ET) efficiency between a green fluorescent protein variant and cytochrome b562. The two approaches developed for ET relied on the construction of coordination assemblies and host-guest coupling. Based on time-resolved photoluminescence measurements in combination with calculations of the spectral overlap function and Förster radius, we demonstrated that both approaches resulted in a very high ET efficiency. In particular, the observed ligand-to-ligand ET efficiency value was the highest reported so far for two distinct ligands in a metal-organic framework. These studies provide important insights for the rational design of crystalline hybrid scaffolds consisting of a large ensemble of chromophore molecules with the capability of directional ET.


Subject(s)
Cytochromes/chemistry , Green Fluorescent Proteins/chemistry , Organometallic Compounds/chemistry , Energy Transfer , Ligands , Luminescence , Models, Molecular , Photochemical Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...