Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 28(11): 3728-3744, 2022 06.
Article in English | MEDLINE | ID: mdl-35253321

ABSTRACT

The warming trend of the Arctic is punctuated by several record-breaking warm years with very low sea ice concentrations. The nature and reversibility of marine ecosystem responses to these multiple extreme climatic events (ECEs) are poorly understood. Here, we investigate the ecological signatures of three successive bottom temperature maxima concomitant with surface ECEs between 2004 and 2017 in the Barents Sea across spatial and organizational scales. We observed community-level redistributions of fish concurrent with ECEs at the scale of the whole Barents Sea. Three groups, characterized by different sets of traits describing their capacity to cope with short-term perturbations, reacted with different timing and intensity to each ECE. Arctic species co-occurred more frequently with large predators and incoming boreal taxa during ECEs, potentially affecting food web structures and functional diversity, accelerating the impacts of long-term climate change. On the species level, responses were highly diversified, with different ECEs impacting different species, and species responses (expansion, geographical shift) varying from one ECE to another, despite the environmental perturbations being similar. Past ECEs impacts, with potential legacy effects, lagged responses, thresholds, and interactions with the underlying warming pressure, could constantly set up new initial conditions that drive the unique ecological signature of each ECE. These results highlight the complexity of ecological reactions to multiple ECEs and give prominence to several sources of process uncertainty in the predictions of climate change impact and risk for ecosystem management. Long-term monitoring and studies to characterize the vertical extent of each ECE are necessary to statistically link demersal species and environmental spatial-temporal patterns. In the future, regular monitoring will be crucial to detect early signals of change and understand the determinism of ECEs, but we need to adapt our models and management to better integrate risk and stochasticity from the complex impacts of global change.


Subject(s)
Climate Change , Ecosystem , Animals , Arctic Regions , Fishes , Food Chain
2.
Mar Environ Res ; 166: 105262, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33513484

ABSTRACT

The polar cod (Boreogadus saida) has a circumpolar distribution and is the most abundant planktivorous fish in the Arctic. Declining sea-ice coverage impacts polar cod directly and also facilitates expansion of human activities in the region leading to increasing anthropogenic pressures on biota. Here we summarize current data and knowledge on polar cod from the Russian sector of the Barents Sea and discuss knowledge needs for the management of polar cod under changing environmental conditions and anthropogenic impacts. We review 36 Russian historical (1935 - 2020) sources of data and knowledge largely unknown to western researchers, in addition to sources already published in the English language. This effort allowed for digitalization and visualization of 69 separate datasets on polar cod ecology, including maturation, fertility, feeding intensity, diet, lipid content, length-weight relationships and seasonal variation in larval size. Our review suggests that polar cod abundances are particularly large in the eastern Barents Sea and adjacent waters. Here, we identify and discuss key knowledge gaps. The review of polar cod in the eastern Barents Sea revealed 1) major variation in the timing and area of polar cod spawning, 2) uncertainty as to what degree the polar cod is dependent on sea ice, 3) deficient knowledge of juvenile (e.g., 0-group) distributions, particularly in the north-eastern Barents Sea, 4) deficient knowledge of the species' genetic structure and spatio-temporal distributions, and 5) insufficient understanding as to whether ongoing environmental change may induce phenological changes affecting the availability of potential food items for polar cod larvae and their match in space and time. Filling these knowledge gaps would provide an important step towards the reliable knowledge base needed in order to perform well-founded management and impact assessment under environmental changes and increasing anthropogenic impacts.


Subject(s)
Gadiformes , Animals , Arctic Regions , Ecology , Humans , Ice Cover , Russia
3.
Glob Chang Biol ; 26(5): 2897-2907, 2020 05.
Article in English | MEDLINE | ID: mdl-32181966

ABSTRACT

Determining the importance of physical and biological drivers in shaping biodiversity in diverse ecosystems remains a global challenge. Advancements have been made towards this end in large marine ecosystems with several studies suggesting environmental forcing as the primary driver. However, both empirical and theoretical studies point to additional drivers of changes in diversity involving trophic interactions and, in particular, predation. Moreover, a more integrated but less common approach to the assessment of biodiversity changes involves analyses of spatial ß diversity, whereas most studies to date assess only changes in species richness (α diversity). Recent research has established that when cod, a dominant generalist predator, was overfished and collapsed in a northwest Atlantic food web, spatial ß diversity increased; that is, the spatial structure of the fish assemblage became increasingly heterogeneous. If cod were to recover, would this situation be reversible, given the inherent complexity and non-linear dynamics that typify such systems? A dramatic increase of cod in an ecologically similar large marine ecosystem may provide an answer. Here we show that spatial ß diversity of fish assemblages in the Barents Sea decreased with increasing cod abundance, while decadal scale changes in temperature did not play a significant role. These findings indicate a reversibility of the fish assemblage structure in response to changing levels of an apex predator and highlight the frequently overlooked importance of trophic interactions in determining large-scale biodiversity patterns. As increased cod abundance was largely driven by changes in fisheries management, our study also shows that management policies and practices, particularly those involving apex predators, can have a strong effect in shaping spatial diversity patterns, and one should not restrict the focus to effects of climate change alone.


Subject(s)
Ecosystem , Food Chain , Animals , Biodiversity , Fisheries , Predatory Behavior
4.
Ecol Evol ; 10(24): 14272-14281, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33391714

ABSTRACT

Climate change is commonly associated with many species redistributions and the influence of other factors may be marginalized, especially in the rapidly warming Arctic.The Barents Sea, a high latitude large marine ecosystem in the Northeast Atlantic has experienced above-average temperatures since the mid-2000s with divergent bottom temperature trends at subregional scales.Concurrently, the Barents Sea stock of Atlantic cod Gadus morhua, one of the most important commercial fish stocks in the world, increased following a large reduction in fishing pressure and expanded north of 80°N.We examined the influence of food availability and temperature on cod expansion using a comprehensive data set on cod stomach fullness stratified by subregions characterized by divergent temperature trends. We then tested whether food availability, as indexed by cod stomach fullness, played a role in cod expansion in subregions that were warming, cooling, or showed no trend.The greatest increase in cod occupancy occurred in three northern subregions with contrasting temperature trends. Cod apparently benefited from initial high food availability in these regions that previously had few large-bodied fish predators.The stomach fullness in the northern subregions declined rapidly after a few years of high cod abundance, suggesting that the arrival of cod caused a top-down effect on the prey base. Prolonged cod residency in the northern Barents Sea is, therefore, not a certainty.

5.
PLoS One ; 13(11): e0207451, 2018.
Article in English | MEDLINE | ID: mdl-30462696

ABSTRACT

When facing environmental change and intensified anthropogenic impact on marine ecosystems, extensive knowledge of how these systems are functioning is required in order to manage them properly. However, in high-latitude ecosystems, where climate change is expected to have substantial ecological impact, the ecosystem functions of biological species have received little attention, partly due to the limited biological knowledge of Arctic species. Functional traits address the ecosystem functions of member species, allowing the functionality of communities to be characterised and the degree of functional redundancy to be assessed. Ecosystems with higher functional redundancy are expected to be less affected by species loss, and therefore less sensitive to disturbance. Here we highlight and compare typical functional characteristics of Arctic and boreal fish in the Barents Sea and address the consequences of a community-wide reorganization driven by climate warming on functional redundancy and characterization. Based on trait and fish community composition data, we assessed functional redundancy of the Barents Sea fish community for the period 2004-2012, a period during which this northern region was characterized by rapidly warming water masses and declining sea ice coverage. We identified six functional groups, with distinct spatial distributions, that collectively provide a functional characterization of Barents Sea fish. The functional groups displayed different prevalence in boreal and Arctic water masses. Some functional groups displayed a spatial expansion towards the northeast during the study period, whereas other groups showed a general decline in functional redundancy. Presently, the observed patterns of functional redundancy would seem to provide sufficient scope for buffering against local loss in functional diversity only for the more speciose functional groups. Furthermore, the observed functional reconfiguration may affect future ecosystem functioning in the area. In a period of rapid environmental change, monitoring programs integrating functional traits will help inform management on ecosystem functioning and vulnerability.


Subject(s)
Climate Change , Ecosystem , Fishes , Animals , Biodiversity , Ecology , Ice Cover
6.
Proc Natl Acad Sci U S A ; 114(46): 12202-12207, 2017 11 14.
Article in English | MEDLINE | ID: mdl-29087943

ABSTRACT

Climate change triggers poleward shifts in species distribution leading to changes in biogeography. In the marine environment, fish respond quickly to warming, causing community-wide reorganizations, which result in profound changes in ecosystem functioning. Functional biogeography provides a framework to address how ecosystem functioning may be affected by climate change over large spatial scales. However, there are few studies on functional biogeography in the marine environment, and none in the Arctic, where climate-driven changes are most rapid and extensive. We investigated the impact of climate warming on the functional biogeography of the Barents Sea, which is characterized by a sharp zoogeographic divide separating boreal from Arctic species. Our unique dataset covered 52 fish species, 15 functional traits, and 3,660 stations sampled during the recent warming period. We found that the functional traits characterizing Arctic fish communities, mainly composed of small-sized bottom-dwelling benthivores, are being rapidly replaced by traits of incoming boreal species, particularly the larger, longer lived, and more piscivorous species. The changes in functional traits detected in the Arctic can be predicted based on the characteristics of species expected to undergo quick poleward shifts in response to warming. These are the large, generalist, motile species, such as cod and haddock. We show how functional biogeography can provide important insights into the relationship between species composition, diversity, ecosystem functioning, and environmental drivers. This represents invaluable knowledge in a period when communities and ecosystems experience rapid climate-driven changes across biogeographical regions.


Subject(s)
Animal Distribution , Climate Change , Fishes/physiology , Models, Statistical , Adaptation, Biological , Animals , Arctic Regions , Ecosystem , Temperature
7.
Proc Biol Sci ; 282(1814)2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26336179

ABSTRACT

Climate-driven poleward shifts, leading to changes in species composition and relative abundances, have been recently documented in the Arctic. Among the fastest moving species are boreal generalist fish which are expected to affect arctic marine food web structure and ecosystem functioning substantially. Here, we address structural changes at the food web level induced by poleward shifts via topological network analysis of highly resolved boreal and arctic food webs of the Barents Sea. We detected considerable differences in structural properties and link configuration between the boreal and the arctic food webs, the latter being more modular and less connected. We found that a main characteristic of the boreal fish moving poleward into the arctic region of the Barents Sea is high generalism, a property that increases connectance and reduces modularity in the arctic marine food web. Our results reveal that habitats form natural boundaries for food web modules, and that generalists play an important functional role in coupling pelagic and benthic modules. We posit that these habitat couplers have the potential to promote the transfer of energy and matter between habitats, but also the spread of pertubations, thereby changing arctic marine food web structure considerably with implications for ecosystem dynamics and functioning.


Subject(s)
Climate Change , Ecosystem , Fishes/physiology , Food Chain , Animals , Aquatic Organisms , Arctic Regions , Geography , Oceans and Seas
8.
PLoS One ; 7(4): e34924, 2012.
Article in English | MEDLINE | ID: mdl-22545093

ABSTRACT

Direct and indirect effects of global warming are expected to be pronounced and fast in the Arctic, impacting terrestrial, freshwater and marine ecosystems. The Barents Sea is a high latitude shelf Sea and a boundary area between arctic and boreal faunas. These faunas are likely to respond differently to changes in climate. In addition, the Barents Sea is highly impacted by fisheries and other human activities. This strong human presence places great demands on scientific investigation and advisory capacity. In order to identify basic community structures against which future climate related or other human induced changes could be evaluated, we analyzed species composition and diversity of demersal fish in the Barents Sea. We found six main assemblages that were separated along depth and temperature gradients. There are indications that climate driven changes have already taken place, since boreal species were found in large parts of the Barents Sea shelf, including also the northern Arctic area. When modelling diversity as a function of depth and temperature, we found that two of the assemblages in the eastern Barents Sea showed lower diversity than expected from their depth and temperature. This is probably caused by low habitat complexity and the distance to the pool of boreal species in the western Barents Sea. In contrast coastal assemblages in south western Barents Sea and along Novaya Zemlya archipelago in the Eastern Barents Sea can be described as diversity "hotspots"; the South-western area had high density of species, abundance and biomass, and here some species have their northern distribution limit, whereas the Novaya Zemlya area has unique fauna of Arctic, coastal demersal fish. (see Information S1 for abstract in Russian).


Subject(s)
Biodiversity , Fishes/classification , Animals , Arctic Regions , Biomass , Climate , Cluster Analysis , Norway , Oceans and Seas , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...