Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Plant Dis ; 106(8): 2182-2190, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35077222

ABSTRACT

Fungi causing wood canker diseases are major factors limiting productivity and longevity of almond and walnut orchards. The goal of this study was to compare pathogen profiles from spore traps with those of plant samples collected from symptomatic almond and walnut trees and assess if profiles could be influenced by orchard type and age, rainfall amount and frequency, and/or neighboring trees. Three almond orchards and one walnut orchard with different characteristics were selected for this study. Fungal inoculum was captured weekly from nine trees per orchard using a passive spore-trapping device, during a 30-week period in the rainy season (October to April) and for two consecutive years. Fungal taxa identified from spore traps were compared with a collection of fungal isolates obtained from 61 symptomatic wood samples collected from the orchards. Using a culture-dependent approach coupled with molecular identification, we identified 18 known pathogenic species from 10 fungal genera (Ceratocystis destructans, Collophorina hispanica, Cytospora eucalypti, Diaporthe ampelina, Diaporthe chamaeropis/rhusicola, Diaporthe eres, Diaporthe novem, Diplodia corticola, Diplodia mutila, Diplodia seriata, Dothiorella iberica, Dothiorella sarmentorum, Dothiorella viticola, Eutypa lata, Neofusicoccum mediterraneum, Neofusicoccum parvum, Neoscytalidium dimidiatum, and Pleurostoma richardsiae), plus two unidentified Cytospora and Diaporthe species. However, only four species were identified with both methods (Diplodia mutila, Diplodia seriata, Dothiorella Iberica, and E. lata), albeit not consistently across orchards. Our results demonstrate a clear disparity between the two diagnostic methods and caution against using passive spore traps to predict disease risks. In particular, the spore trap approach failed to capture: insect-vectored pathogens such as Ceratocystis destructans that were often recovered from almond trunk and scaffold; Diaporthe chamaeropis/rhusicola commonly isolated from wood samples likely because Diaporthe species have a spatially restricted dispersal mechanism, as spores are exuded in a cirrus; and pathogenic species with low incidence in wood samples such as P. richardsiae and Collophorina hispanica. We propose that orchard inoculum is composed of both endemic taxa that are characterized by frequent and repeated trapping events from the same trees and isolated from plant samples, as well as immigrant taxa characterized by rare trapping events. We hypothesize that host type, orchard age, precipitation, and alternative hosts at the periphery of orchards are factors that could affect pathogen profile. We discuss the limitations and benefits of our methodology and experimental design to develop guidelines and prediction tools for fungal wood canker diseases in California orchards.


Subject(s)
Juglans , Prunus dulcis , Ascomycota , Ceratocystis , Juglans/microbiology , Spores, Fungal , Wood
2.
Cryogenics (Guildf) ; 1272022 Oct.
Article in English | MEDLINE | ID: mdl-37842207

ABSTRACT

Superconducting magnets used for Magnetic Resonance Imaging (MRI) scanners need to keep temperature gradients minimized in order to retain thermal and operating current margin. We have used 3D finite element analysis (FEA) simulation in COMSOL Multiphysics software that includes both conductive heat transfer and radiative heating to calculate the temperature distribution both along the winding direction and across the cross-section of an MRI segment coil at its equilibrium operating temperature. We have also modelled the evolution of the thermal properties during cool-down from ambient temperature. The heat capacity and thermal conductivity of the magnet winding were computed for use within this simulation. The heat capacity as a function of temperature was calculated using a rule of mixtures. This procedure was also used for the thermal conductivity along the direction of the wire. However, the thermal conductivity within the composite cross section (x- and y-directions) was computed using a 2D FEA model. Based on this, a time-dependent, 3D coil model was built to calculate the coil temperature throughout the winding during cool-down in our test cryostat system. The model included a heat leak component to the coil current contacts via conduction through the current leads as well as a radiative component from the surfaces of the cryostat. A key result was that a maximum coil ΔTmax = 5.1 K (=maximum temperature within the winding -minimum temperature in the winding) was seen and a coil Ic margin of 12.75 A was predicted at steady state, with our first current lead design. A second set of more optimized current leads significantly lowered the ΔTmax within the coil at the steady state. The coil Ic margin has been analyzed for different current lead designs.

3.
Plant Dis ; 105(2): 346-360, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32757731

ABSTRACT

Almond canker diseases are destructive and can reduce the yield as well as the lifespan of almond orchards. These diseases may affect the trunk and branches of both young and mature trees and can result in tree death soon after orchard establishment in severe cases. Between 2015 and 2018, 70 almond orchards were visited throughout the Central Valley of California upon requests from farm advisors for canker disease diagnosis. Two major canker diseases were identified, including Botryosphaeriaceae cankers and Ceratocystis canker. In addition, five less prevalent canker diseases were identified, including Cytospora, Eutypa, Diaporthe, Collophorina, and Pallidophorina canker. Seventy-four fungal isolates were selected for multilocus phylogenetic analyses of internal transcribed spacer region ITS1-5.8S-ITS2 and part of the translation elongation factor 1-α, ß-tubulin, and glyceraldehyde 3-phosphate dehydrogenase gene sequences; 27 species were identified, including 12 Botryosphaeriaceae species, Ceratocystis destructans, five Cytospora species, Collophorina hispanica, four Diaporthe species, two Diatrype species, Eutypa lata, and Pallidophorina paarla. The most frequently isolated species were Ceratocystis destructans, Neoscytalidium dimidiatum, and Cytospora californica. Pathogenicity experiments on almond cultivar Nonpareil revealed that Neofusicoccum parvum, Neofusicoccum arbuti, and Neofusicoccum mediterraneum were the most virulent. Botryosphaeriaceae cankers were predominantly found in young orchards and symptoms were most prevalent on the trunks of trees. Ceratocystis canker was most commonly found in mature orchards and associated with symptoms found on trunks or large scaffold branches. This study provides a thorough examination of the diversity and pathogenicity of fungal pathogens associated with branch and trunk cankers of almond in California.


Subject(s)
Prunus dulcis , Ascomycota , California , DNA, Fungal/genetics , Phylogeny , Plant Diseases
4.
PLoS One ; 15(3): e0229588, 2020.
Article in English | MEDLINE | ID: mdl-32218562

ABSTRACT

There is an urgent need to develop climate smart agroecosystems capable of mitigating climate change and adapting to its effects. In California, high commodity prices and increased frequency of drought have encouraged orchard turnover, providing an opportunity to recycle tree biomass in situ prior to replanting an orchard. Whole orchard recycling (WOR) has potential as a carbon (C) negative cultural practice to build soil C storage, soil health, and orchard productivity. We tested the potential of this practice for long term C sequestration and hypothesized that associated co-benefits to soil health will enhance sustainability and resiliency of almond orchards to water-deficit conditions. We measured soil health metrics and productivity of an almond orchard following grinding and incorporation of woody biomass vs. burning of old orchard biomass 9 years after implementation. We also conducted a deficit irrigation trial with control and deficit irrigation (-20%) treatments to quantify shifts in tree water status and resilience. Biomass recycling led to higher yields and substantial improvement in soil functioning, including nutrient content, aggregation, porosity, and water retention. This practice also sequestered significantly higher levels of C in the topsoil (+5 t ha-1) compared to burning. We measured a 20% increase in irrigation water use efficiency and improved soil and tree water status under stress, suggesting that in situ biomass recycling can be considered as a climate smart practice in California irrigated almond systems.


Subject(s)
Agriculture/methods , Climate Change , Prunus dulcis/growth & development , Acclimatization , Agricultural Irrigation , Biomass , California , Carbon Sequestration , Droughts , Prunus dulcis/physiology , Recycling , Soil/chemistry , Soil Microbiology , Trees , Water
5.
Insects ; 10(10)2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31591308

ABSTRACT

Leaffooted bugs (Leptoglossus spp; Hemiptera: Coreidae) are phytophagous insects native to the Western Hemisphere. In California, Leptoglossus clypealis and Leptoglossus zonatus are occasional pests on almonds. Early season feeding by L. clypealis and L. zonatus leads to almond drop, while late season feeding results in strikes on kernels, kernel necrosis, and shriveled kernels. A field cage study was conducted to assess feeding damage associated with L. clypealis and L. zonatus on four almond varieties, Nonpareil, Fritz, Monterey, and Carmel. The objectives were to determine whether leaffooted bugs caused significant almond drop, to pinpoint when the almond was vulnerable, and to determine the final damage at harvest. Branches with ~20 almonds were caged and used to compare almond drop and final damage in four treatments: (1) control branches, (2) mechanically punctured almonds, (3) adult Leptoglossus clypealis, and (4) adult Leptoglossus zonatus. Replicates were set up for eight weeks during two seasons. Early season feeding resulted in higher almond drop than late season, and L. zonatus resulted in greater drop than L. clypealis. The almond hull width of the four varieties in the study did not influence susceptibility to feeding damage. The final damage assessment at harvest found significant levels of kernel strikes, kernel necrosis, and shriveled almonds in bug feeding cages, with higher levels attributed to L. zonatus than L. clypealis. Further research is warranted to develop an Integrated Pest Management program with reduced risk controls for L. zonatus.

6.
Plant Dis ; 103(8): 1931-1939, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31188738

ABSTRACT

California produces 99.1% of pistachios grown in the United States, and diseases affecting pistachio rootstocks represent a constant challenge to the industry. Field surveys of fungi associated with pistachio rootstocks with symptoms of crown rot and stem canker in three central California counties followed by phylogenetic analyses of translation elongation factor 1-α and second largest subunit of RNA polymerase II gene fragments identified three Fusarium species (Fusarium equiseti, Fusarium oxysporum, and Fusarium proliferatum) and two Neocosmospora species (Neocosmospora falciformis and Neocosmospora solani). F. oxysporum and N. falciformis were the fungal species most frequently recovered from symptomatic pistachio trees. Inoculations of detached twigs of cultivar Kerman pistachio Pioneer Gold I and clonal University of California, Berkeley I (UCBI) rootstocks showed that all five species could colonize pistachio wood and cause vascular discolorations. Pathogenicity tests in potted pistachio trees completed Koch's postulates and confirmed that F. oxysporum, F. proliferatum, N. falciformis, and N. solani were capable of producing rot and discoloration in stems of clonal UCBI rootstocks, the most widely planted pistachio rootstock in California. To our knowledge, this study is the first to present insights into the biodiversity and biology of Fusarium and Neocosmospora species associated with pistachio trees in California.


Subject(s)
Ascomycota , Fusarium , Pistacia , Ascomycota/classification , Ascomycota/physiology , California , Fusarium/classification , Fusarium/physiology , Phylogeny , Pistacia/microbiology , Plant Diseases/microbiology
7.
J Nematol ; 51: 1-3, 2019.
Article in English | MEDLINE | ID: mdl-31115204

ABSTRACT

In April-August 2018, samples of galled roots with rhizosphere soil were collected from almond orchards in Atwater, Merced County and Bakersfield, Kern County, California. Almond trees (Prunus dulcis) grafted on 'Hansen 536' and 'Brights Hybrid®5' (peach-almond hybrid) rootstocks showed strong symptoms of growth decline. Extracted root-knot nematodes were identified by both morphological and molecular methods as M. floridensis. Meloidogyne floridensis was initially found in Florida, USA, and has not been reported from any other states and countries. This is a first report of M. floridensis in California and outside of Florida.In April-August 2018, samples of galled roots with rhizosphere soil were collected from almond orchards in Atwater, Merced County and Bakersfield, Kern County, California. Almond trees (Prunus dulcis) grafted on 'Hansen 536' and 'Brights Hybrid®5' (peach-almond hybrid) rootstocks showed strong symptoms of growth decline. Extracted root-knot nematodes were identified by both morphological and molecular methods as M. floridensis. Meloidogyne floridensis was initially found in Florida, USA, and has not been reported from any other states and countries. This is a first report of M. floridensis in California and outside of Florida.

8.
J Environ Manage ; 223: 469-477, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29957420

ABSTRACT

Reducing fumigant emissions is essential for minimizing the environmental impacts of pre-plant soil fumigation. Low permeability plastic films are effective at reducing emissions but have high initial purchase, installation, and disposal costs. The objective of this study was to evaluate if deep fumigant injection and biochar soil amendments can reduce emissions, improve fumigant distribution in soil, and provide acceptable control of plant parasitic nematodes. A pre-plant soil fumigation trial was conducted in a commercial orchard in the San Joaquin Valley, CA, USA. Treatments included two rates of Telone® C-35 (a mixture of 1,3-dichloropropene and chloropicrin) under totally impermeable film or with no surface seal, two injection depths (45 or 65 cm), and two biochar rates (20 or 40 ton ha-1). Emission rates were generally low due to rain events encountered during the trial, but data clearly showed that the deep injection enhanced fumigant delivery to depths below 60 cm and resulted in significantly lower peak emission compared to the standard injection depth. Biochar applied at 40 ton ha-1 had the lowest emission rates during 1-month monitoring period. Although variability in nematode survival was high, tarped, deep injection, and biochar treatment showed lower survival of nematodes at various depths. Increase in fumigant persistence, especially chloropicrin, was observed in this study, likely due to the high soil moisture and low temperature. All data indicate that biochar amendments can help reduce fumigant emissions without reducing nematode control; however, additional research is needed to optimize treatments, determine the affordability of various biochar materials, and validate results under a range of field conditions.


Subject(s)
Charcoal , Nematoda , Pest Control , Pesticides , Allyl Compounds , Animals , Hydrocarbons, Chlorinated , Soil , Soil Pollutants
9.
Supercond Sci Technol ; 30(4)2017 Apr.
Article in English | MEDLINE | ID: mdl-29170604

ABSTRACT

Conceptual designs of 1.5 and 3.0 T full-body magnetic resonance imaging (MRI) magnets using conduction cooled MgB2 superconductor are presented. The sizes, locations, and number of turns in the eight coil bundles are determined using optimization methods that minimize the amount of superconducting wire and produce magnetic fields with an inhomogeneity of less than 10 ppm over a 45 cm diameter spherical volume. MgB2 superconducting wire is assessed in terms of the transport, thermal, and mechanical properties for these magnet designs. Careful calculations of the normal zone propagation velocity and minimum quench energies provide support for the necessity of active quench protection instead of passive protection for medium temperature superconductors such as MgB2. A new 'active' protection scheme for medium Tc based MRI magnets is presented and simulations demonstrate that the magnet can be protected. Recent progress on persistent joints for multifilamentary MgB2 wire is presented. Finite difference calculations of the quench propagation and temperature rise during a quench conclude that active intervention is needed to reduce the temperature rise in the coil bundles and prevent damage to the superconductor. Comprehensive multiphysics and multiscale analytical and finite element analysis of the mechanical stress and strain in the MgB2 wire and epoxy for these designs are presented for the first time. From mechanical and thermal analysis of our designs we conclude there would be no damage to such a magnet during the manufacturing or operating stages, and that the magnet would survive various quench scenarios. This comprehensive set of magnet design considerations and analyses demonstrate the overall viability of 1.5 and 3.0 T MgB2 magnet designs.

10.
Phytopathology ; 106(4): 339-47, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26645645

ABSTRACT

Vineyards with trunk diseases (Botryosphaeria dieback, Esca, Eutypa dieback, and Phomopsis dieback) can have negative returns in the long run. Minimizing economic impacts depends on effective management, but adopting a preventative practice after infection occurs may not improve yields. Pest control advisers may reduce grower uncertainty about the efficacy of and need for prevention, which often entails future and unobservable benefits. Here, we surveyed advisers in California to examine their influence over grower decision-making, in the context of trunk diseases, which significantly limit grape production and for which curative practices are unavailable. Our online survey revealed adviser awareness of high disease incidence, and reduced yields and vineyard lifespan. Advisers rated both preventative and postinfection practices positively. Despite higher cost estimates given to postinfection practices, advisers did not recommend preventative practices at higher rates. High recommendation rates were instead correlated with high disease incidence for both preventative and postinfection practices. Recommendation rates declined with increasing cost for preventative, but not for postinfection, practices. Our findings suggest that even when advisers acknowledge the risks of trunk diseases, they may not recommend preventative practices before infection occurs. This underscores the importance of clear outreach, emphasizing both the need for prevention and its long-term cost efficacy.


Subject(s)
Ascomycota/physiology , Pest Control , Plant Diseases/prevention & control , Vitis/microbiology , California , Consultants , Plant Diseases/microbiology
11.
Phytopathology ; 96(3): 308-12, 2006 Mar.
Article in English | MEDLINE | ID: mdl-18944446

ABSTRACT

ABSTRACT The fungal plant pathogen Microsphaeropsis amaranthi is a candidate bioherbicide for the control of weedy Amaranthus species since it grows and sporulates readily in culture, is a pathogen of a number of important weed species, and is host-restricted to the family Amaranthaceae. This study was designed to determine the optimum and limiting environmental conditions for the efficacy of foliar applications of M. amaranthi for the control of common waterhemp. The greatest disease severity and the greatest plant biomass reductions were found when a prolonged leaf wetness period of >/= 12 h at 18 to 24 degrees C was provided after application. Disease severity and plant biomass reductions were greater when plants were treated at an earlier stage of development. Disease severity and impact were limited when shorter leaf wetness periods were provided, with negligible disease observed on plants provided with

SELECTION OF CITATIONS
SEARCH DETAIL
...