Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 35487, 2016 10 17.
Article in English | MEDLINE | ID: mdl-27748422

ABSTRACT

Loss-of-function mutations in BSCL2 are responsible for Berardinelli-Seip congenital lipodystrophy, a rare disorder characterized by near absence of adipose tissue associated with insulin resistance. Seipin-deficient (Bscl2-/-) mice display an almost total loss of white adipose tissue (WAT) with residual brown adipose tissue (BAT). Previous cellular studies have shown that seipin deficiency alters white adipocyte differentiation. In this study, we aimed to decipher the consequences of seipin deficiency in BAT. Using a brown adipocyte cell-line, we show that seipin knockdown had very little effect on adipocyte differentiation without affecting insulin sensitivity and oxygen consumption. However, when submitted to cold acclimation or chronic ß3 agonist treatment, Bscl2-/- mice displayed altered thermogenic capacity, despite several signs of BAT remodeling. Under cold activation, Bscl2-/- mice were able to maintain their body temperature when fed ad libitum, but not under short fasting. At control temperature (i.e. 21 °C), fasting worsened Bscl2-/- BAT properties. Finally, Bscl2-/- BAT displayed obvious signs of insulin resistance. Our results in these lipodystrophic mice strongly suggest that BAT activity relies on WAT as an energetic substrate provider and adipokine-producing organ. Therefore, the WAT/BAT dialogue is a key component of BAT integrity in guaranteeing its response to insulin and cold-activated adrenergic signals.


Subject(s)
Adipose Tissue, Brown/physiology , Heterotrimeric GTP-Binding Proteins/deficiency , Insulin Resistance/genetics , Thermogenesis/genetics , Adaptation, Physiological , Adipocytes/cytology , Adipocytes/metabolism , Adipose Tissue, Brown/cytology , Adipose Tissue, Brown/diagnostic imaging , Animals , Cell Differentiation/genetics , Disease Models, Animal , GTP-Binding Protein gamma Subunits , Glucose/metabolism , Lipid Metabolism/genetics , Lipolysis , Mice , Mice, Knockout , Positron Emission Tomography Computed Tomography , Signal Transduction , Thermogenesis/drug effects , X-Ray Microtomography
2.
Diabetologia ; 56(8): 1813-25, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23680914

ABSTRACT

AIMS/HYPOTHESIS: Mutations in BSCL2/seipin cause Berardinelli-Seip congenital lipodystrophy (BSCL), a rare recessive disorder characterised by near absence of adipose tissue and severe insulin resistance. We aimed to determine how seipin deficiency alters glucose and lipid homeostasis and whether thiazolidinediones can rescue the phenotype. METHODS: Bscl2 (-/-) mice were generated and phenotyped. Mouse embryonic fibroblasts (MEFs) were used as a model of adipocyte differentiation. RESULTS: As observed in humans, Bscl2 (-/-) mice displayed an early depletion of adipose tissue, with insulin resistance and severe hepatic steatosis. However, Bscl2 (-/-) mice exhibited an unexpected hypotriglyceridaemia due to increased clearance of triacylglycerol-rich lipoproteins (TRL) and uptake of fatty acids by the liver, with reduced basal energy expenditure. In vitro experiments with MEFs demonstrated that seipin deficiency led to impaired late adipocyte differentiation and increased basal lipolysis. Thiazolidinediones were able to rescue the adipogenesis impairment but not the alteration in lipolysis in Bscl2 (-/-) MEFs. In vivo treatment of Bscl2 (-/-) mice with pioglitazone for 9 weeks increased residual inguinal and mesenteric fat pads as well as plasma leptin and adiponectin concentrations. Pioglitazone treatment increased energy expenditure and improved insulin resistance, hypotriglyceridaemia and liver steatosis in these mice. CONCLUSIONS/INTERPRETATION: Seipin plays a key role in the differentiation and storage capacity of adipocytes, and affects glucose and lipid homeostasis. The hypotriglyceridaemia observed in Bscl2 (-/-) mice is linked to increased uptake of TRL by the liver, offering a new model of liver steatosis. The demonstration that the metabolic complications associated with BSCL can be partially rescued with pioglitazone treatment opens an interesting therapeutic perspective for BSCL patients.


Subject(s)
Heterotrimeric GTP-Binding Proteins/deficiency , Thiazolidinediones/therapeutic use , Adipocytes/cytology , Adipocytes/metabolism , Animals , Cells, Cultured , Energy Metabolism/physiology , Female , GTP-Binding Protein gamma Subunits , Heterotrimeric GTP-Binding Proteins/genetics , Lipodystrophy, Congenital Generalized/drug therapy , Lipodystrophy, Congenital Generalized/metabolism , Mice , Mice, Mutant Strains , Pioglitazone , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...