Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37725741

ABSTRACT

This article proposes a new framework using physics-informed neural networks (PINNs) to simulate complex structural systems that consist of single and double beams based on Euler-Bernoulli and Timoshenko theories, where the double beams are connected with a Winkler foundation. In particular, forward and inverse problems for the Euler-Bernoulli and Timoshenko partial differential equations (PDEs) are solved using nondimensional equations with the physics-informed loss function. Higher order complex beam PDEs are efficiently solved for forward problems to compute the transverse displacements and cross-sectional rotations with less than 1e-3 % error. Furthermore, inverse problems are robustly solved to determine the unknown dimensionless model parameters and applied force in the entire space-time domain, even in the case of noisy data. The results suggest that PINNs are a promising strategy for solving problems in engineering structures and machines involving beam systems.

2.
Sensors (Basel) ; 17(10)2017 Sep 29.
Article in English | MEDLINE | ID: mdl-28961221

ABSTRACT

In this paper, we investigate the capability of an axle box acceleration (ABA) system to evaluate the degradation at railway crossings. For this purpose, information from multiple sensors, namely, ABA signals, 3D rail profiles, Global Positioning System (GPS) and tachometer recordings, was collected from both nominal and degraded crossings. By proper correlation of the gathered data, an algorithm was proposed to distinguish the characteristic ABA related to the degradation and then to evaluate the health condition of crossings. The algorithm was then demonstrated on a crossing with an unknown degradation status, and its capability was verified via a 3D profile measurement. The results indicate that the ABA system is effective at monitoring two types of degradations. The first type is uneven deformation between the wing rail and crossing nose, corresponding to characteristic ABA frequencies of 230-350 and 460-650 Hz. The second type is local irregularity in the longitudinal slope of the crossing nose, corresponding to characteristic ABA frequencies of 460-650 Hz. The types and severity of the degradation can be evaluated by the spatial distribution and energy concentration of the characteristic frequencies of the ABA signals.

3.
Risk Anal ; 37(8): 1495-1507, 2017 08.
Article in English | MEDLINE | ID: mdl-28561899

ABSTRACT

Railway infrastructure monitoring is a vital task to ensure rail transportation safety. A rail failure could result in not only a considerable impact on train delays and maintenance costs, but also on safety of passengers. In this article, the aim is to assess the risk of a rail failure by analyzing a type of rail surface defect called squats that are detected automatically among the huge number of records from video cameras. We propose an image processing approach for automatic detection of squats, especially severe types that are prone to rail breaks. We measure the visual length of the squats and use them to model the failure risk. For the assessment of the rail failure risk, we estimate the probability of rail failure based on the growth of squats. Moreover, we perform severity and crack growth analyses to consider the impact of rail traffic loads on defects in three different growth scenarios. The failure risk estimations are provided for several samples of squats with different crack growth lengths on a busy rail track of the Dutch railway network. The results illustrate the practicality and efficiency of the proposed approach.

SELECTION OF CITATIONS
SEARCH DETAIL