Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Antiviral Res ; 225: 105871, 2024 May.
Article in English | MEDLINE | ID: mdl-38555022

ABSTRACT

The spread of COVID-19 continues due to genetic variation in SARS-CoV-2. Highly mutated variants of SARS-CoV-2 have an increased transmissibility and immune evasion. Due to the emergence of various new variants of the virus, there is an urgent need to develop broadly effective specific drugs for therapeutic strategies for the prevention and treatment of COVID-19. Molnupiravir (EIDD-2801, MK-4482), is an orally bioavailable ribonucleoside analogue of ß-D-N4-hydroxycytidine (NHC), has demonstrated efficacy against SARS-CoV-2 and was recently approved for COVID-19 treatment. To improve antiviral potency of NHC, we developed a panel of NHC conjugates with lipophilic vectors and ester derivatives with amino- and carboxylic-acids. Most of the synthesized compounds had comparable or higher (2-20 times) antiviral activity than EIDD-2801, against different lineages of SARS-CoV-2, MERS-CoV, seasonal coronaviruses OC43 and 229E, as well as bovine coronavirus. For further studies, we assessed the most promising compound in terms of activity, simplicity and cost of synthesis - NHC conjugate with phenylpropionic acid (SN_9). SN_9 has shown high efficacy in prophylactic, therapeutic and transmission models of COVID-19 infection in hamsters. Importantly, SN_9 profoundly inhibited virus replication in the lower respiratory tract of hamsters and transgenic mice infected with the Omicron sublineages XBB.1.9.1, XBB.1.16 and EG.5.1.1. These data indicate that SN_9 represents a promising antiviral drug candidate for COVID-19 treatment, and NHC modification strategies deserve further investigation as an approach to develop prodrugs against various coronaviruses.


Subject(s)
COVID-19 , Cytidine/analogs & derivatives , Hydroxylamines , SARS-CoV-2 , Mice , Animals , Cattle , Humans , Antiviral Agents/pharmacology , COVID-19 Drug Treatment
2.
Front Immunol ; 14: 1259725, 2023.
Article in English | MEDLINE | ID: mdl-37928549

ABSTRACT

Several virus-neutralizing monoclonal antibodies (mAbs) have become new tools in the treatment of the coronavirus disease (COVID-19), but their effectiveness against the rapidly mutating virus is questionable. The present study investigated the effectiveness of Tixagevimab/Cilgavimab and Regdanvimab for mild and moderate COVID-19 treatment in real-world clinical practice during the Omicron variant-dominant period. Patients with known risk factors for disease progression and increasing disease severity were enrolled in the study within the first 7 days of symptom onset. Seventy-seven patients were divided into four groups: first 15 patients received 300 mg Tixagevimab/Cilgavimab intravenously (IV) and 23 patients got the same drug 300 mg intramuscularly (IM), the next 15 patients was on the same combination in dose of 600 mg IV, and 24 patients were on Regdanvimab at a dose of 40 mg/kg IV. By Day 4, 100% of Tixagevimab/Cilgavimab IV patients showed negative polymerase chain reaction results for SARS-CoV-2 Ribonucleic acid (RNA) regardless of the mAbs dose while in the Regdanvimab group 29% of the patients were positive for SARS-CoV-2 virus RNA. The testing for virus neutralizing antibodies (nAbs) to various Omicron sublineages (BA.1, BA.2, and BA.5) showed that an increase in nAb levels was detected in blood serum immediately after the drug administration only in Tixagevimab/Cilgavimab 300 mg and 600 mg IV groups. In the group of intravenous Regdanvimab, a significant increase in the level of nAbs to the Wuhan variant was detected immediately after the drug administration, while no increase in nAbs to different Omicron sublineages was observed. Clinical trial registration: https://clinicaltrials.gov/, identifier NCT05982704.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Humans , Antibodies, Blocking , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing , RNA , SARS-CoV-2 , Treatment Outcome
3.
Vaccines (Basel) ; 11(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37896937

ABSTRACT

The spread of COVID-19 continues, expressed by periodic wave-like increases in morbidity and mortality. The reason for the periodic increases in morbidity is the emergence and spread of novel genetic variants of SARS-CoV-2. A decrease in the efficacy of monoclonal antibodies (mAbs) has been reported, especially against Omicron subvariants. There have been reports of a decrease in the efficacy of specific antiviral drugs as a result of mutations in the genes of non-structural proteins. This indicates the urgent need for practical healthcare to constantly monitor pathogen variability and its effect on the efficacy of preventive and therapeutic drugs. As part of this study, we report the results of the continuous monitoring of COVID-19 in Moscow using genetic and virological methods. As a result of this monitoring, we determined the dominant genetic variants and identified the variants that are most widespread, not only in Moscow, but also in other countries. A collection of viruses from more than 500 SARS-CoV-2 isolates has been obtained and characterized. The genetic lines XBB.1.9.1, XBB.1.9.3, XBB.1.5, XBB.1.16, XBB.2.4, BQ.1.1.45, CH.1.1, and CL.1, representing the greatest concern, were identified among the dominant variants. We studied the in vitro efficacy of mAbs Tixagevimab + Cilgavimab (Evusheld), Sotrovimab, Regdanvimab, Casirivimab + Imdevimab (Ronapreve), and Bebtelovimab, as well as the specific antiviral drugs Remdesivir, Molnupiravir, and Nirmatrelvir, against these genetic lines. At the current stage of the COVID-19 pandemic, the use of mAbs developed against early SARS-CoV-2 variants has little prospect. Specific antiviral drugs retain their activity, but further monitoring is needed to assess the risk of their efficacy being reduced and adjust recommendations for their use.

4.
Front Immunol ; 14: 1228461, 2023.
Article in English | MEDLINE | ID: mdl-37600800

ABSTRACT

To protect young individuals against SARS-CoV-2 infection, we conducted an open-label, prospective, non-randomised dose-escalation Phase 1/2 clinical trial to evaluate the immunogenicity and safety of the prime-boost "Sputnik V" vaccine administered at 1/10 and 1/5 doses to adolescents aged 12-17 years. The study began with the vaccination of the older cohort (15-to-17-year-old participants) with the lower (1/10) dose of vaccine and then expanded to the whole group (12-to-17-year-old participants). Next, 1/5 dose was used according to the same scheme. Both doses were well tolerated by all age groups. No serious or severe adverse events were detected. Most of the solicited adverse reactions were mild. No significant differences in total frequencies of adverse events were registered between low and high doses in age-pooled groups (69.6% versus 66.7%). In contrast, the 1/5 dose induced significantly higher humoral and T cell-mediated immune responses than the 1/10 dose. The 1/5 vaccine dose elicited higher antigen-binding (both S and RBD-specific) as well as virus-neutralising antibody titres at the maximum of response (day 42), also resulting in a statistically significant difference at a distanced timepoint (day 180) compared to the 1/10 vaccine dose. Higher dose resulted in increased cross-neutralization of Delta and Omicron variants. Clinical Trial Registration: ClinicalTrials.gov, NCT04954092, LP-007632.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adolescent , Child , Humans , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Prospective Studies , SARS-CoV-2
5.
Front Immunol ; 14: 1129245, 2023.
Article in English | MEDLINE | ID: mdl-37063833

ABSTRACT

Introduction: Numerous agents for prophylaxis of SARS-CoV-2-induced diseases are currently registered for the clinical use. Formation of the immunity happens within several weeks following vaccine administration which is their key disadvantage. In contrast, drugs based on monoclonal antibodies, enable rapid passive immunization and therefore can be used for emergency pre- and post-exposure prophylaxis of COVID-19. However rapid elimination of antibody-based drugs from the circulation limits their usage for prolonged pre-exposure prophylaxis. Methods: In current work we developed a recombinant adeno-associated viral vector (rAAV), expressing a SARS-CoV-2 spike receptor-binding domain (RBD)-specific antibody P2C5 fused with a human IgG1 Fc fragment (P2C5-Fc) using methods of molecular biotechnology and bioprocessing. Results and discussions: A P2C5-Fc antibody expressed by a proposed rAAV (rAAV-P2C5-Fc) was shown to circulate within more than 300 days in blood of transduced mice and protect animals from lethal SARS-CoV-2 virus (B.1.1.1 and Omicron BA.5 variants) lethal dose of 105 TCID50. In addition, rAAV-P2C5-Fc demonstrated 100% protective activity as emergency prevention and long-term prophylaxis, respectively. It was also demonstrated that high titers of neutralizing antibodies to the SARS-CoV-2 virus were detected in the blood serum of animals that received rAAV-P2C5-Fc for more than 10 months from the moment of administration.Our data therefore indicate applicability of an rAAV for passive immunization and induction of a rapid long-term protection against various SARS-CoV-2 variants.


Subject(s)
COVID-19 , Humans , Animals , Mice , COVID-19/prevention & control , SARS-CoV-2 , Biotechnology , Antibodies, Monoclonal , Antibodies, Viral , Immunoglobulin Fc Fragments
6.
Front Immunol ; 13: 1023164, 2022.
Article in English | MEDLINE | ID: mdl-36466896

ABSTRACT

WHO has declared the outbreak of monkeypox as a public health emergency of international concern. In less than three months, monkeypox was detected in more than 30 000 people and spread to more than 80 countries around the world. It is believed that the immunity formed to smallpox vaccine can protect from monkeypox infection with high efficiency. The widespread use of Vaccinia virus has not been carried out since the 1980s, which raises the question of the level of residual immunity among the population and the identification of groups requiring priority vaccination. We conducted a cross-sectional serological study of remaining immunity among Moscow residents. To do this, a collection of blood serum samples of age group over 30 years old was formed, an in-house ELISA test system was developed, and a virus neutralization protocol was set up. Serum samples were examined for the presence of IgG antibodies against Vaccinia virus (n=2908), as well as for the ability to neutralize plaque formation with a Vaccinia virus MNIIVP-10 strain (n=299). The results indicate the presence of neutralizing antibody titer of 1/20 or more in 33.3 to 53.2% of people older than 45 years. Among people 30-45 years old who probably have not been vaccinated, the proportion with virus neutralizing antibodies ranged from 3.2 to 6.7%. Despite the higher level of antibodies in age group older than 66 years, the proportion of positive samples in this group was slightly lower than in people aged 46-65 years. The results indicate the priority of vaccination in groups younger than 45, and possibly older than 66 years to ensure the protection of the population in case of spread of monkeypox among Moscow residents. The herd immunity level needed to stop the circulation of the virus should be at least 50.25 - 65.28%.


Subject(s)
Communicable Diseases , Mpox (monkeypox) , Orthopoxvirus , Humans , Adult , Middle Aged , Monkeypox virus , Cross-Sectional Studies , Moscow/epidemiology , Vaccinia virus , Antibodies, Neutralizing
7.
Hum Vaccin Immunother ; 18(6): 2101334, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-35914217

ABSTRACT

The article highlights the course of long-term SARS-CoV-2 infection in a patient with a secondary immunodeficiency developed with B-cell-depleting therapy of the underlying disease. Analysis of the intrapatient virus evolution revealed an inpatient S:G75A mutation that alters the 72GTNGTKR78 motif of the S-protein, with a possible role in binding to alternative cellular receptors. Therapy with a ready-made COVID-19-globulin preparation (native human immunoglobulin G (IgG) derived from the plasma of convalescent COVID-19-patients) resulted in rapid improvement of the patient's condition, fast, and stable elimination of the virus, and passive immunization of the patient for at least 30 days. The results suggest the use of products containing neutralizing antibodies opens new prospects for treatment algorithms for patients with persistent coronavirus infection, as well as for passive immunization schemes for patients with a presumably reduced specific response to vaccination.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Antibodies, Viral , Immunization, Passive/methods , Antibodies, Neutralizing
8.
Emerg Microbes Infect ; 11(1): 2229-2247, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36031930

ABSTRACT

Although unprecedented efforts aiming to stop the COVID-19 pandemic have been made over the past two years, SARSCoV-2 virus still continues to cause intolerable health and economical losses. Vaccines are considered the most effective way to prevent infectious diseases, which has been reaffirmed for COVID-19. However, in the context of the continuing virus spread because of insufficient vaccination coverage and emergence of new variants of concern, there is a high demand for vaccination strategy amendment. The ability to elicit protective immunity at the entry gates of infection provided by mucosal vaccination is key to block virus infection and transmission. Therefore, these mucosal vaccines are believed to be a "silver bullet" that could bring the pandemic to an end. Here, we demonstrate that the intranasally delivered Gam-COVID-Vac (Sputnik V) vaccine induced a robust (no less than 180 days) systemic and local immune response in mice. High immunogenic properties of the vaccine were verified in non-human primates (common marmosets) by marked IgG and neutralizing antibody (NtAb) production in blood serum, antigen-specific Tcell proliferation and cytokine release of peripheral blood mononuclear cells accompanied by formation of IgA antibodies in the nasal mucosa. We also demonstrate that Sputnik V vaccine can provide sterilizing immunity in K18-hACE2 transgenic mice exposed to experimental lethal SARS-CoV-2 infection protecting them against severe lung immunopathology and mortality. We believe that intranasal Sputnik V vaccine is a promising novel needle-free mucosal vaccine candidate for primary immunization as well as for revaccination and is worth further clinical investigation.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Cytokines , Humans , Immunogenicity, Vaccine , Immunoglobulin A , Immunoglobulin G , Leukocytes, Mononuclear , Mice , Pandemics/prevention & control , Primates , SARS-CoV-2/genetics
9.
Vaccines (Basel) ; 10(5)2022 May 21.
Article in English | MEDLINE | ID: mdl-35632574

ABSTRACT

The new Omicron variant of SARS-CoV-2, first identified in November 2021, is rapidly spreading all around the world. Omicron has become the dominant variant of SARS-CoV-2. There are many ongoing studies evaluating the effectiveness of existing vaccines. Studies on the neutralizing activity of vaccinated sera against the Omicron variant are currently being carried out in many laboratories. In this study, we have shown the neutralizing activity of sera against the SARS-CoV-2 Omicron variant compared to the reference Wuhan D614G variant in individuals vaccinated with two doses of Sputnik V up to 6 months after vaccination and in individuals who experienced SARS-CoV-2 infection either before or after vaccination. As a control to our study we also measured neutralizing antibody titers in individuals vaccinated with two doses of BNT162b2. The decrease in NtAb titers to the Omicron variant was 8.1-fold for the group of Sputnik V-vaccinated individuals. When the samples were stratified for the time period after vaccination, a 7.6-fold or 8.8-fold decrease in NtAb titers was noticed after up to 3 and 3-to-6 months after vaccination. We observed a 6.7- and 5-fold decrease in Sputnik V-vaccinated individuals experiencing asymptomatic or symptomatic infection, respectively. These results highlight the observation that the decrease in NtAb to the SARS-CoV-2 Omicron variant compared to the Wuhan variant occurs for different COVID-19 vaccines in use, with some showing no neutralization at all, confirming the necessity of a third booster vaccination.

11.
Clin Infect Dis ; 75(1): e1-e9, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35435222

ABSTRACT

BACKGROUND: During the ongoing coronavirus disease 2019 (COVID-19) pandemic, many individuals were infected with and have cleared the virus, developing virus-specific antibodies and effector/memory T cells. An important unanswered question is what levels of T-cell and antibody responses are sufficient to protect from the infection. METHODS: In 5340 Moscow residents, we evaluated anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin M (IgM)/immunoglobulin G (IgG) titers and frequencies of the T cells specific to the membrane, nucleocapsid, and spike proteins of SARS-CoV-2, using interferon gamma (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assay. Additionally, we evaluated the fractions of virus-specific CD4+ and CD8+ T cells using intracellular staining of IFN-γ and interleukin 2 followed by flow cytometry. We analyzed the COVID-19 rates as a function of the assessed antibody and T-cell responses, using the Kaplan-Meier estimator method, for up to 300 days postinclusion. RESULTS: We showed that T-cell and antibody responses are closely interconnected and are commonly induced concurrently. Magnitudes of both responses inversely correlated with infection probability. Individuals positive for both responses demonstrated the highest levels of protectivity against the SARS-CoV-2 infection. A comparable level of protection was found in individuals with antibody response only, whereas the T-cell response by itself granted only intermediate protection. CONCLUSIONS: We found that the contribution of the virus-specific antibodies to protection against SARS-CoV-2 infection is more pronounced than that of the T cells. The data on the virus-specific IgG titers may be instructive for making decisions in personalized healthcare and public anti-COVID-19 policies. Clinical Trials Registration. NCT04898140.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Immunoglobulin G , Prospective Studies
12.
Front Immunol ; 13: 822159, 2022.
Article in English | MEDLINE | ID: mdl-35281053

ABSTRACT

Virus-neutralizing antibodies are one of the few treatment options for COVID-19. The evolution of SARS-CoV-2 virus has led to the emergence of virus variants with reduced sensitivity to some antibody-based therapies. The development of potent antibodies with a broad spectrum of neutralizing activity is urgently needed. Here we isolated a panel of single-domain antibodies that specifically bind to the receptor-binding domain of SARS-CoV-2 S glycoprotein. Three of the selected antibodies exhibiting most robust neutralization potency were used to generate dimeric molecules. We observed that these modifications resulted in up to a 200-fold increase in neutralizing activity. The most potent heterodimeric molecule efficiently neutralized each of SARS-CoV-2 variant of concern, including Alpha, Beta, Gamma, Delta and Omicron variants. This heterodimeric molecule could be a promising drug candidate for a treatment for COVID-19 caused by virus variants of concern.


Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19/immunology , SARS-CoV-2/physiology , Single-Domain Antibodies/metabolism , Epitopes/immunology , Humans , Neutralization Tests , Single-Domain Antibodies/genetics , Spike Glycoprotein, Coronavirus/immunology
13.
J Immunol ; 208(5): 1139-1145, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35101893

ABSTRACT

Despite measures taken world-wide, the coronavirus disease 2019 (COVID-19) pandemic continues. Because efficient antiviral drugs are not yet widely available, vaccination is the best option to control the infection rate. Although this option is obvious in the case of COVID-19-naive individuals, it is still unclear when individuals who have recovered from a previous SARS-CoV-2 infection should be vaccinated and whether the vaccination raises immune responses against the coronavirus and its novel variants. In this study, we collected peripheral blood from 84 healthy human donors of different COVID-19 status who were vaccinated with the Sputnik Light vaccine and measured the dynamics of the Ab and T cell responses, as well as the virus-neutralizing activity (VNA) in serum, against two SARS-CoV-2 variants, B.1.1.1 and B.1.617.2. We showed that vaccination of individuals previously exposed to the virus considerably boosts the existing immune response. In these individuals, receptor-binding domain (RBD)-specific IgG titers and VNA in serum were already elevated on the 7th day after vaccination, whereas COVID-19-naive individuals developed the Ab response and VNA mainly 21 d postvaccination. Additionally, we found a strong correlation between RBD-specific IgG titers and VNA in serum, and according to these data vaccination may be recommended when the RBD-specific IgG titers drop to 142.7 binding Ab units/ml or below. In summary, the results of the study demonstrate that vaccination is beneficial for both COVID-19-naive and recovered individuals, especially since it raises serum VNA against the B.1.617.2 variant, one of the five SARS-CoV-2 variants of concern.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Vaccines, Synthetic/immunology , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Protein Domains/immunology , Russia , T-Lymphocytes/immunology , Vaccination
14.
Diagnostics (Basel) ; 12(2)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35204485

ABSTRACT

The humoral response to the SARS-CoV-2 S protein determines the development of protective immunity against this infection. The standard neutralizing antibodies detection method is a live virus neutralization test. It can be replaced with an ELISA-based surrogate virus neutralization test (sVNT), measuring the ability of serum antibodies to inhibit complex formation between the receptor-binding domain (RBD) of the S protein and the cellular ACE2 receptor. There are conflicting research data on the sVNT methodology and the reliability of its results. We show that the performance of sVNT dramatically improves when the intact RBD from the Wuhan-Hu-1 virus variant is used as the plate coating reagent, and the HRP-conjugated soluble ACE2 is used as the detection reagent. This design omits the pre-incubation step in separate tubes or separate microplate and allows the simple quantification of the results using the linear regression, utilizing only 3-4 test sample dilutions. When this sVNT was performed for 73 convalescent plasma samples, its results showed a very strong correlation with VNT (Spearman's Rho 0.83). For the RBD, bearing three amino acid substitutions and corresponding to the SARS-CoV-2 beta variant, the inhibitory strength was diminished for 18 out of 20 randomly chosen serum samples, and the magnitude of this decrease was not similar to the change in overall anti-RBD IgG level. The sVNT assay design with the ACE2-HRP is preferable over the assay with the RBD-HRP reagent and is suitable for mass screening of neutralizing antibodies titers.

15.
Lancet Reg Health Eur ; 11: 100241, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34746910

ABSTRACT

BACKGROUND: While the world is experiencing another wave of COVID-19 pandemic, global vaccination program is hampered by an evident shortage in the supply of licensed vaccines. In an effort to satisfy vaccine demands we developed a new single-dose vaccine based on recombinant adenovirus type 26 (rAd26) vector carrying the gene for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) glycoprotein - "Sputnik Light". METHODS: We conducted an open label, prospective, non-randomised phase 1/2 trial aimed to assess safety, tolerability, and immunogenicity of "Sputnik Light" vaccine in a single center in Russia. Primary outcome measures were antigen-specific humoral immunity (Anti-RBD-SARS-CoV-2 antibodies measured by ELISA on days 1, 10, 28, and 42) and safety (number of participants with adverse events monitored throughout the study). Secondary outcome measures were antigen-specific cellular immunity (measured by antigen-dependent CD4+ and CD8+ T-cell proliferation, number of antigen-specific interferon-γ-producing cells as well as interferon-γ concentration upon antigen restimulation) and change in neutralizing antibodies (measured in SARS-CoV-2 neutralization assay). FINDINGS: Most of the solicited adverse reactions were mild (66·4% from all vaccinees), few were moderate (5·5%). No serious adverse events were detected. Assessment of Anti-RBD-SARS-CoV-2 antibodies revealed a group with pre-existing immunity to SARS-CoV-2. Upon this finding we separated all safety and immunogenicity data based on pre-existing immunity to SARS-CoV-2. There were notable differences in the vaccine effects on immunogenicity by the groups. Vaccination of seropositive (N=14) volunteers rapidly boosted RBD-specific IgGs from reciprocal geometric mean titer (​GMT) 594·4 at a baseline up to 26899 comparing to 29·09 in seronegative group (N=96) by day 10. By day 42 seroconversion rate reached 100% (93/93) in seronegative group with GMT 1648. At the same time, in the seropositive group, seroconversion rate by day 42 was 92·9% (13/14) with GMT 19986. Analysis of neutralizing antibodies to SARS-CoV-2 showed 81·7% (76/93) and 92·9% (13/14) seroconversion rates by day 42 with median reciprocal GMT 15·18 and 579·7 in the seronegative and seropositive groups, respectively. Antigen-specific T cell proliferation, formation of IFNy-producing cells, and IFNy secretion were observed in 96·7% (26/27), 96% (24/25), and 96% (24/25) of the seronegative group respectively and in 100% (3/3), 100% (5/5), and 100% (5/5) of the seropositive vaccinees, respectively. INTERPRETATION: The single-dose rAd26 vector-based COVID-19 vaccine "Sputnik Light" has a good safety profile and induces a strong humoral and cellular immune responses both in seronegative and seropositive participants. FUNDING: Russian Direct Investment Fund.

16.
Vaccines (Basel) ; 9(7)2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34358195

ABSTRACT

Since the beginning of the 2021 year, all the main six vaccines against COVID-19 have been used in mass vaccination companies around the world. Virus neutralization and epidemiological efficacy drop obtained for several vaccines against the B.1.1.7, B.1.351 P.1, and B.1.617 genotypes are of concern. There is a growing number of reports on mutations in receptor-binding domain (RBD) increasing the transmissibility of the virus and escaping the neutralizing effect of antibodies. The Sputnik V vaccine is currently approved for use in more than 66 countries but its activity against variants of concern (VOC) is not extensively studied yet. Virus-neutralizing activity (VNA) of sera obtained from people vaccinated with Sputnik V in relation to internationally relevant genetic lineages B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.617.3 and Moscow endemic variants B.1.1.141 (T385I) and B.1.1.317 (S477N, A522S) with mutations in the RBD domain has been assessed. The data obtained indicate no significant differences in VNA against B.1.1.7, B.1.617.3 and local genetic lineages B.1.1.141 (T385I), B.1.1.317 (S477N, A522S) with RBD mutations. For the B.1.351, P.1, and B.1.617.2 statistically significant 3.1-, 2.8-, and 2.5-fold, respectively, VNA reduction was observed. Notably, this decrease is lower than that reported in publications for other vaccines. However, a direct comparative study is necessary for a conclusion. Thus, sera from "Sputnik V"-vaccinated retain neutralizing activity against VOC B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.617.3 as well as local genetic lineages B.1.1.141 and B.1.1.317 circulating in Moscow.

18.
Vox Sang ; 116(6): 665-672, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33734455

ABSTRACT

BACKGROUND AND OBJECTIVES: COVID-19 convalescent plasma is an experimental treatment against SARS-CoV-2. The aim of this study is to assess the impact of different pathogen reduction methods on the levels and virus neutralizing activity of the specific antibodies against SARS-CoV2 in convalescent plasma. MATERIALS AND METHODS: A total of 140 plasma doses collected by plasmapheresis from COVID-19 convalescent donors were subjected to pathogen reduction by three methods: methylene blue (M)/visible light, riboflavin (R)/UVB and amotosalen (A)/UVA. To conduct a paired comparison, individual plasma doses were divided into 2 samples that were subjected to one of these methods. The titres of SARS-CoV2 neutralizing antibodies (NtAbs) and levels of specific immunoglobulins to RBD, S- and N-proteins of SARS-CoV-2 were measured before and after pathogen reduction. RESULTS: The methods reduced NtAbs titres differently: among units with the initial titre 80 or above, 81% of units remained unchanged and 19% decreased by one step after methylene blue; 60% were unchanged and 40% decreased by one step after amotosalen; after riboflavin 43% were unchanged and 50% (7%, respectively) had a one-step (two-step, respectively) decrease. Paired two-sample comparisons (M vs. A, M vs. R and A vs. R) revealed that the largest statistically significant decrease in quantity and activity of the specific antibodies resulted from the riboflavin treatment. CONCLUSION: Pathogen reduction with methylene blue or with amotosalen provides the greater likelihood of preserving the immunological properties of the COVID-19 convalescent plasma compared to riboflavin.


Subject(s)
Blood Safety/methods , Blood-Borne Pathogens/isolation & purification , COVID-19/therapy , Plasma/immunology , Antibodies, Neutralizing/blood , COVID-19/immunology , Furocoumarins , Humans , Immunization, Passive , Methylene Blue , Riboflavin , SARS-CoV-2/immunology , COVID-19 Serotherapy
19.
Lancet ; 397(10275): 671-681, 2021 02 20.
Article in English | MEDLINE | ID: mdl-33545094

ABSTRACT

BACKGROUND: A heterologous recombinant adenovirus (rAd)-based vaccine, Gam-COVID-Vac (Sputnik V), showed a good safety profile and induced strong humoral and cellular immune responses in participants in phase 1/2 clinical trials. Here, we report preliminary results on the efficacy and safety of Gam-COVID-Vac from the interim analysis of this phase 3 trial. METHODS: We did a randomised, double-blind, placebo-controlled, phase 3 trial at 25 hospitals and polyclinics in Moscow, Russia. We included participants aged at least 18 years, with negative SARS-CoV-2 PCR and IgG and IgM tests, no infectious diseases in the 14 days before enrolment, and no other vaccinations in the 30 days before enrolment. Participants were randomly assigned (3:1) to receive vaccine or placebo, with stratification by age group. Investigators, participants, and all study staff were masked to group assignment. The vaccine was administered (0·5 mL/dose) intramuscularly in a prime-boost regimen: a 21-day interval between the first dose (rAd26) and the second dose (rAd5), both vectors carrying the gene for the full-length SARS-CoV-2 glycoprotein S. The primary outcome was the proportion of participants with PCR-confirmed COVID-19 from day 21 after receiving the first dose. All analyses excluded participants with protocol violations: the primary outcome was assessed in participants who had received two doses of vaccine or placebo, serious adverse events were assessed in all participants who had received at least one dose at the time of database lock, and rare adverse events were assessed in all participants who had received two doses and for whom all available data were verified in the case report form at the time of database lock. The trial is registered at ClinicalTrials.gov (NCT04530396). FINDINGS: Between Sept 7 and Nov 24, 2020, 21 977 adults were randomly assigned to the vaccine group (n=16 501) or the placebo group (n=5476). 19 866 received two doses of vaccine or placebo and were included in the primary outcome analysis. From 21 days after the first dose of vaccine (the day of dose 2), 16 (0·1%) of 14 964 participants in the vaccine group and 62 (1·3%) of 4902 in the placebo group were confirmed to have COVID-19; vaccine efficacy was 91·6% (95% CI 85·6-95·2). Most reported adverse events were grade 1 (7485 [94·0%] of 7966 total events). 45 (0·3%) of 16 427 participants in the vaccine group and 23 (0·4%) of 5435 participants in the placebo group had serious adverse events; none were considered associated with vaccination, with confirmation from the independent data monitoring committee. Four deaths were reported during the study (three [<0·1%] of 16 427 participants in the vaccine group and one [<0·1%] of 5435 participants in the placebo group), none of which were considered related to the vaccine. INTERPRETATION: This interim analysis of the phase 3 trial of Gam-COVID-Vac showed 91·6% efficacy against COVID-19 and was well tolerated in a large cohort. FUNDING: Moscow City Health Department, Russian Direct Investment Fund, and Sberbank.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology , Adult , Antibodies, Viral/blood , COVID-19/immunology , Double-Blind Method , Female , Humans , Immunization, Secondary , Injections, Intramuscular , Male , Middle Aged , Moscow , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
20.
Microorganisms ; 8(11)2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33143246

ABSTRACT

Chromobacterium species are common in tropical and subtropical zones in environmental samples according to numerous studies. Here, we describe an environmental case of resident Chromobacterium vaccinii in biofilms associated with Carex spp. roots in Moscow region, Russia (warm-summer humid continental climate zone). We performed broad characterization of individual properties as well as surrounding context for better understanding of the premise of C. vaccinii survival during the winter season. Genome properties of isolated strains propose some insights into adaptation to habit and biofilm mode of life, including social cheaters carrying ΔluxR mutation. Isolated C. vaccinii differs from previously described strains in some biochemical properties and some basic characteristics like fatty acid composition as well as unique genome features. Despite potential to modulate membrane fluidity and presence of several genes responsible for cold shock response, isolated C. vaccinii did not survive during exposure to 4 °C, while in the complex biofilm sample, it was safely preserved for at least half a year in vitro at 4 °C. The surrounding bacterial community within the same biofilm with C. vaccinii represented a series of psychrophilic bacterial species, which may share resistance to low temperatures with other species within biofilm and provide C. vaccinii an opportunity to survive during the cold winter season.

SELECTION OF CITATIONS
SEARCH DETAIL
...