Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(26): e2306707, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38247201

ABSTRACT

In living organisms, carotenoids are incorporated in biomembranes, remarkably modulating their mechanical characteristics, fluidity, and permeability. Significant resonance enhancement of Raman optical activity (ROA) signals of carotenoid chiral aggregates makes resonance ROA (RROA), a highly selective tool to study exclusively carotenoid assemblies in model membranes. Hence, RROA is combined with electronic circular dichroism (ECD), dynamic light scattering (DLS), molecular dynamics, and quantum-chemical calculations to shed new light on the carotenoid aggregation in dipalmitoylphosphatidylcholine (DPPC) liposomes. Using representative members of the carotenoid family: apolar α-carotene and more polar fucoxanthin and zeaxanthin, the authors demonstrate that the stability of carotenoid aggregates is directly linked with their orientation in membranes and the monomer structures inside the assemblies. In particular, polyene chain distortion of α-carotene molecules is an important feature of J-aggregates that show increased orientational freedom and stability inside liposomes compared to H-assemblies of more polar xanthophylls. In light of these results, RROA emerges as a new tool to study active compounds and drugs embedded in membranes.


Subject(s)
Carotenoids , Liposomes , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Carotenoids/chemistry , Liposomes/chemistry , Molecular Dynamics Simulation , Circular Dichroism , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Xanthophylls/chemistry
2.
Front Microbiol ; 9: 1592, 2018.
Article in English | MEDLINE | ID: mdl-30065714

ABSTRACT

Amsacrine, which inhibits eukaryotic type II topoisomerase via DNA intercalation and stabilization of the cleavable topoisomerase-DNA complex, promotes DNA damage and eventually cell death. Amsacrine has also been shown to inhibit structurally distinct bacterial type I topoisomerases (TopAs), including mycobacterial TopA, the only and essential topoisomerase I in Mycobacterium tuberculosis. Here, we describe the modifications of an amsacrine sulfonamide moiety that presumably interacts with mycobacterial TopA, which notably increased the enzyme inhibition and drug selectivity in vivo. To analyse the effects of amsacrine and its derivatives treatment on cell cycle, we used time-lapse fluorescence microscopy (TLMM) and fusion of the ß-subunit of DNA polymerase III with enhanced green fluorescence protein (DnaN-EGFP). We determined that treatment with amsacrine and its derivatives increased the number of DnaN-EGFP complexes and/or prolonged the time of chromosome replication and cell cycle notably. The analysis of TopA depletion strain confirmed that lowering TopA level results in similar disturbances of chromosome replication. In summary, since TopA is crucial for mycobacterial cell viability, the compounds targeting the enzyme disturbed the cell cycle and thus may constitute a new class of anti-tuberculosis drugs.

SELECTION OF CITATIONS
SEARCH DETAIL
...