Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Commun Biol ; 7(1): 524, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702419

ABSTRACT

A large proportion of HIV-coinfected visceral leishmaniasis (VL-HIV) patients exhibit chronic disease with frequent VL recurrence. However, knowledge on immunological determinants underlying the disease course is scarce. We longitudinally profiled the circulatory cellular immunity of an Ethiopian HIV cohort that included VL developers. We show that chronic VL-HIV patients exhibit high and persistent levels of TIGIT and PD-1 on CD8+/CD8- T cells, in addition to a lower frequency of IFN-γ+ TIGIT- CD8+/CD8- T cells, suggestive of impaired T cell functionality. At single T cell transcriptome and clonal resolution, the patients show CD4+ T cell anergy, characterised by a lack of T cell activation and lymphoproliferative response. These findings suggest that PD-1 and TIGIT play a pivotal role in VL-HIV chronicity, and may be further explored for patient risk stratification. Our findings provide a strong rationale for adjunctive immunotherapy for the treatment of chronic VL-HIV patients to break the recurrent disease cycle.


Subject(s)
Coinfection , HIV Infections , Leishmaniasis, Visceral , Humans , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/complications , Leishmaniasis, Visceral/parasitology , HIV Infections/immunology , HIV Infections/complications , Coinfection/immunology , Male , Adult , Female , CD8-Positive T-Lymphocytes/immunology , Middle Aged , Chronic Disease , CD4-Positive T-Lymphocytes/immunology , Ethiopia
2.
EMBO Rep ; 24(9): e57413, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37470283

ABSTRACT

Aneuploidy is generally considered harmful, but in some microorganisms, it can act as an adaptive mechanism against environmental stress. Here, we use Leishmania-a protozoan parasite with remarkable genome plasticity-to study the early steps of aneuploidy evolution under high drug pressure (using antimony or miltefosine as stressors). By combining single-cell genomics, lineage tracing with cellular barcodes, and longitudinal genome characterization, we reveal that aneuploidy changes under antimony pressure result from polyclonal selection of pre-existing karyotypes, complemented by further and rapid de novo alterations in chromosome copy number along evolution. In the case of miltefosine, early parasite adaptation is associated with independent point mutations in a miltefosine transporter gene, while aneuploidy changes only emerge later, upon exposure to increased drug levels. Therefore, polyclonality and genome plasticity are hallmarks of parasite adaptation, but the scenario of aneuploidy dynamics depends on the nature and strength of the environmental stress as well as on the existence of other pre-adaptive mechanisms.


Subject(s)
Leishmania , Humans , Leishmania/genetics , Antimony , Chromosomes , Aneuploidy
3.
Plant J ; 115(3): 788-802, 2023 08.
Article in English | MEDLINE | ID: mdl-37114596

ABSTRACT

The Arabidopsis ERECTA family (ERf) of leucine-rich repeat receptor-like kinases (LRR-RLKs) comprising ERECTA (ER), ERECTA-LIKE 1 (ERL1), and ERECTA-LIKE 2 (ERL2) controls epidermal patterning, inflorescence architecture, and stomata development and patterning. These proteins are reported to be plasma membrane associated. Here we show that the er/erl1/erl2 mutant exhibits impaired gibberellin (GA) biosynthesis and perception alongside broad transcriptional changes. The ERf kinase domains were found to localize to the nucleus where they interact with the SWI3B subunit of the SWI/SNF chromatin remodeling complex (CRCs). The er/erl1/erl2 mutant exhibits reduced SWI3B protein level and affected nucleosomal chromatin structure. Similar to swi3c and brm plants with inactivated subunits of SWI/SNF CRCs, it also does not accumulate DELLA RGA and GAI proteins. The ER kinase phosphorylates SWI3B in vitro, and the inactivation of all ERf proteins leads to the decreased phosphorylation of SWI3B protein in vivo. The identified correlation between DELLA overaccumulation and SWI3B proteasomal degradation, and the physical interaction of SWI3B with DELLA proteins indicate an important role of SWI3B-containing SWI/SNF CRCs in gibberellin signaling. Co-localization of ER and SWI3B on GID1 (GIBBERELLIN INSENSITIVE DWARF 1) DELLA target gene promoter regions and abolished SWI3B binding to GID1 promoters in er/erl1/erl2 plants supports the conclusion that ERf-SWI/SNF CRC interaction is important for transcriptional control of GA receptors. Thus, the involvement of ERf proteins in the transcriptional control of gene expression, and observed similar features for human HER2 (epidermal growth family receptor member), indicate an exciting target for further studies of evolutionarily conserved non-canonical functions of eukaryotic membrane receptors.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Humans , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cell Nucleus/metabolism , Chromatin Assembly and Disassembly , Gibberellins/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/genetics
4.
PLoS Pathog ; 18(9): e1010848, 2022 09.
Article in English | MEDLINE | ID: mdl-36149920

ABSTRACT

Aneuploidy causes system-wide disruptions in the stochiometric balances of transcripts, proteins, and metabolites, often resulting in detrimental effects for the organism. The protozoan parasite Leishmania has an unusually high tolerance for aneuploidy, but the molecular and functional consequences for the pathogen remain poorly understood. Here, we addressed this question in vitro and present the first integrated analysis of the genome, transcriptome, proteome, and metabolome of highly aneuploid Leishmania donovani strains. Our analyses unambiguously establish that aneuploidy in Leishmania proportionally impacts the average transcript- and protein abundance levels of affected chromosomes, ultimately correlating with the degree of metabolic differences between closely related aneuploid strains. This proportionality was present in both proliferative and non-proliferative in vitro promastigotes. However, as in other Eukaryotes, we observed attenuation of dosage effects for protein complex subunits and in addition, non-cytoplasmic proteins. Differentially expressed transcripts and proteins between aneuploid Leishmania strains also originated from non-aneuploid chromosomes. At protein level, these were enriched for proteins involved in protein metabolism, such as chaperones and chaperonins, peptidases, and heat-shock proteins. In conclusion, our results further support the view that aneuploidy in Leishmania can be adaptive. Additionally, we believe that the high karyotype diversity in vitro and absence of classical transcriptional regulation make Leishmania an attractive model to study processes of protein homeostasis in the context of aneuploidy and beyond.


Subject(s)
Leishmania donovani , Proteome , Aneuploidy , Heat-Shock Proteins/genetics , Humans , Karyotype , Leishmania donovani/genetics , Peptide Hydrolases/genetics , Proteome/genetics
5.
Nucleic Acids Res ; 50(1): 293-305, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34893872

ABSTRACT

Leishmania, a unicellular eukaryotic parasite, is a unique model for aneuploidy and cellular heterogeneity, along with their potential role in adaptation to environmental stresses. Somy variation within clonal populations was previously explored in a small subset of chromosomes using fluorescence hybridization methods. This phenomenon, termed mosaic aneuploidy (MA), might have important evolutionary and functional implications but remains under-explored due to technological limitations. Here, we applied and validated a high throughput single-cell genome sequencing method to study for the first time the extent and dynamics of whole karyotype heterogeneity in two clonal populations of Leishmania promastigotes representing different stages of MA evolution in vitro. We found that drastic changes in karyotypes quickly emerge in a population stemming from an almost euploid founder cell. This possibly involves polyploidization/hybridization at an early stage of population expansion, followed by assorted ploidy reduction. During further stages of expansion, MA increases by moderate and gradual karyotypic alterations, affecting a defined subset of chromosomes. Our data provide the first complete characterization of MA in Leishmania and pave the way for further functional studies.


Subject(s)
Aneuploidy , Evolution, Molecular , Leishmania donovani/genetics , Mosaicism , Single-Cell Analysis/methods , Whole Genome Sequencing/methods , Genome, Protozoan
6.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34903666

ABSTRACT

How genome instability is harnessed for fitness gain despite its potential deleterious effects is largely elusive. An ideal system to address this important open question is provided by the protozoan pathogen Leishmania, which exploits frequent variations in chromosome and gene copy number to regulate expression levels. Using ecological genomics and experimental evolution approaches, we provide evidence that Leishmania adaptation relies on epistatic interactions between functionally associated gene copy number variations in pathways driving fitness gain in a given environment. We further uncover posttranscriptional regulation as a key mechanism that compensates for deleterious gene dosage effects and provides phenotypic robustness to genetically heterogenous parasite populations. Finally, we correlate dynamic variations in small nucleolar RNA (snoRNA) gene dosage with changes in ribosomal RNA 2'-O-methylation and pseudouridylation, suggesting translational control as an additional layer of parasite adaptation. Leishmania genome instability is thus harnessed for fitness gain by genome-dependent variations in gene expression and genome-independent compensatory mechanisms. This allows for polyclonal adaptation and maintenance of genetic heterogeneity despite strong selective pressure. The epistatic adaptation described here needs to be considered in Leishmania epidemiology and biomarker discovery and may be relevant to other fast-evolving eukaryotic cells that exploit genome instability for adaptation, such as fungal pathogens or cancer.


Subject(s)
Adaptation, Physiological/genetics , Epistasis, Genetic , Genome, Protozoan , Genomic Instability , Leishmania/genetics , Gene Dosage , Genetic Fitness , Humans , Leishmaniasis/parasitology
7.
J Med Chem ; 64(16): 12152-12162, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34355566

ABSTRACT

Leishmaniasis, a disease caused by protozoa of the Leishmania species, afflicts roughly 12 million individuals worldwide. Most existing drugs for leishmaniasis are toxic, expensive, difficult to administer, and subject to drug resistance. We report a new class of antileishmanial leads, the 3-arylquinolines, that potently block proliferation of the intramacrophage amastigote form of Leishmania parasites with good selectivity relative to the host macrophages. Early lead 34 was rapidly acting and possessed good potency against L. mexicana (EC50 = 120 nM), 30-fold selectivity for the parasite relative to the macrophage (EC50 = 3.7 µM), and also blocked proliferation of Leishmania donovani parasites resistant to antimonial drugs. Finally, another early lead, 27, which exhibited reasonable in vivo tolerability, impaired disease progression during the dosing period in a murine model of cutaneous leishmaniasis. These results suggest that the arylquinolines provide a fruitful departure point for the development of new antileishmanial drugs.


Subject(s)
Leishmaniasis, Cutaneous/drug therapy , Quinolines/therapeutic use , Trypanocidal Agents/therapeutic use , Animals , Female , Leishmania/drug effects , Mice, Inbred BALB C , Microsomes, Liver/metabolism , Molecular Structure , Quinolines/chemical synthesis , Quinolines/metabolism , Quinolines/pharmacokinetics , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/metabolism , Trypanocidal Agents/pharmacokinetics
8.
Sci Rep ; 10(1): 15043, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32929126

ABSTRACT

Here, we report a pilot study paving the way for further single cell genomics studies in Leishmania. First, the performances of two commercially available kits for Whole Genome Amplification (WGA), PicoPLEX and RepliG were compared on small amounts of Leishmania donovani DNA, testing their ability to preserve specific genetic variations, including aneuploidy levels and SNPs. We show here that the choice of WGA method should be determined by the planned downstream genetic analysis, PicoPLEX and RepliG performing better for aneuploidy and SNP calling, respectively. This comparison allowed us to evaluate and optimize corresponding bio-informatic methods. As PicoPLEX was shown to be the preferred method for studying single cell aneuploidy, this method was applied in a second step, on single cells of L. braziliensis, which were sorted by fluorescence activated cell sorting (FACS). Even sequencing depth was achieved in 28 single cells, allowing accurate somy estimation. A dominant karyotype with three aneuploid chromosomes was observed in 25 cells, while two different minor karyotypes were observed in the other cells. Our method thus allowed the detection of aneuploidy mosaicism, and provides a solid basis which can be further refined to concur with higher-throughput single cell genomic methods.


Subject(s)
Computational Biology/methods , Genome, Protozoan , Karyotyping/methods , Leishmania/genetics , Single-Cell Analysis/methods , Aneuploidy , Flow Cytometry/methods
9.
PLoS Negl Trop Dis ; 13(12): e0007900, 2019 12.
Article in English | MEDLINE | ID: mdl-31830038

ABSTRACT

Whole genome sequencing (WGS) is increasingly used for molecular diagnosis and epidemiology of infectious diseases. Current Leishmania genomic studies rely on DNA extracted from cultured parasites, which might introduce sampling and biological biases into the subsequent analyses. Up to now, direct analysis of Leishmania genome in clinical samples is hampered by high levels of human DNA and large variation in parasite load in clinical samples. Here, we present a method, based on target enrichment of Leishmania donovani DNA with Agilent SureSelect technology, that allows the analysis of Leishmania genomes directly in clinical samples. We validated our protocol with a set of artificially mixed samples, followed by the analysis of 63 clinical samples (bone marrow or spleen aspirates) from visceral leishmaniasis patients in Nepal. We were able to identify genotypes using a set of diagnostic SNPs in almost all of these samples (97%) and access comprehensive genome-wide information in most (83%). This allowed us to perform phylogenomic analysis, assess chromosome copy number and identify large copy number variants (CNVs). Pairwise comparisons between the parasite genomes in clinical samples and derived in vitro cultured promastigotes showed a lower aneuploidy in amastigotes as well as genomic differences, suggesting polyclonal infections in patients. Altogether our results underline the need for sequencing parasite genomes directly in the host samples.


Subject(s)
Genotype , Leishmania/classification , Leishmania/genetics , Leishmaniasis, Visceral/parasitology , Specimen Handling/methods , Whole Genome Sequencing/methods , Adolescent , Child , Child, Preschool , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , Humans , Infant , Leishmania/isolation & purification , Nepal
10.
Sci Rep ; 9(1): 18951, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31831818

ABSTRACT

Under stressful conditions some microorganisms adopt a quiescent stage characterized by a reversible non or slow proliferative condition that allows their survival. This adaptation was only recently discovered in Leishmania. We developed an in vitro model and a biosensor to track quiescence at population and single cell levels. The biosensor is a GFP reporter gene integrated within the 18S rDNA locus, which allows monitoring the expression of 18S rRNA (rGFP expression). We showed that rGFP expression decreased significantly and rapidly during the transition from extracellular promastigotes to intracellular amastigotes and that it was coupled in vitro with a decrease in replication as measured by BrdU incorporation. rGFP expression was useful to track the reversibility of quiescence in live cells and showed for the first time the heterogeneity of physiological stages among the population of amastigotes in which shallow and deep quiescent stages may coexist. We also validated the use of rGFP expression as a biosensor in animal models of latent infection. Our models and biosensor should allow further characterization of quiescence at metabolic and molecular level.


Subject(s)
DNA, Protozoan , DNA, Ribosomal , Genetic Loci , Green Fluorescent Proteins , Leishmania braziliensis , Leishmania mexicana , Microorganisms, Genetically-Modified , Animals , DNA, Protozoan/genetics , DNA, Protozoan/metabolism , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Leishmania braziliensis/cytology , Leishmania braziliensis/growth & development , Leishmania braziliensis/metabolism , Leishmania mexicana/cytology , Leishmania mexicana/genetics , Leishmania mexicana/metabolism , Mice
11.
Plant Cell ; 31(2): 346-367, 2019 02.
Article in English | MEDLINE | ID: mdl-30705134

ABSTRACT

Throughout the temperate zones, plants face combined drought and heat spells in increasing frequency and intensity. Here, we compared periodic (intermittent, i.e., high-frequency) versus chronic (continuous, i.e., high-intensity) drought-heat stress scenarios in gray poplar (Populus× canescens) plants for phenotypic and transcriptomic effects during stress and after recovery. Photosynthetic productivity after stress recovery exceeded the performance of poplar trees without stress experience. We analyzed the molecular basis of this stress-related memory phenotype and investigated gene expression responses across five major tree compartments including organs and wood tissues. For each of these tissue samples, transcriptomic changes induced by the two stress scenarios were highly similar during the stress phase but strikingly divergent after recovery. Characteristic molecular response patterns were found across tissues but involved different genes in each tissue. Only a small fraction of genes showed similar stress and recovery expression profiles across all tissues, including type 2C protein phosphatases, the LATE EMBRYOGENESIS ABUNDANT PROTEIN4-5 genes, and homologs of the Arabidopsis (Arabidopsis thaliana) transcription factor HOMEOBOX7. Analysis of the predicted transcription factor regulatory networks for these genes suggested that a complex interplay of common and tissue-specific components contributes to the coordination of post-recovery responses to stress in woody plants.


Subject(s)
Plant Proteins/metabolism , Populus/metabolism , Droughts , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Plant Proteins/genetics , Populus/genetics , Stress, Physiological
12.
New Phytol ; 221(3): 1345-1358, 2019 02.
Article in English | MEDLINE | ID: mdl-30267580

ABSTRACT

Although cell number generally correlates with organ size, the role of cell cycle control in growth regulation is still largely unsolved. We studied kip related protein (krp) 4, 6 and 7 single, double and triple mutants of Arabidopsis thaliana to understand the role of cell cycle inhibitory proteins in leaf development. We performed leaf growth and seed size analysis, kinematic analysis, flow cytometery, transcriptome analysis and mathematical modeling of G1/S and G2/M checkpoint progression of the mitotic and endoreplication cycle. Double and triple mutants progressively increased mature leaf size, because of elevated expression of cell cycle and DNA replication genes stimulating progression through the division and endoreplication cycle. However, cell number was also already increased before leaf emergence, as a result of an increased cell number in the embryo. We show that increased embryo and seed size in krp4/6/7 results from seed abortion, presumably reducing resource competition, and that seed size differences contribute to the phenotype of several large-leaf mutants. Our results provide a new mechanistic understanding of the role of cell cycle regulation in leaf development and highlight the contribution of the embryo to the development of leaves after germination in general.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/anatomy & histology , Arabidopsis/genetics , Gene Expression Regulation, Plant , Plant Leaves/anatomy & histology , Arabidopsis/cytology , Arabidopsis/embryology , Arabidopsis Proteins/metabolism , Biomechanical Phenomena , Cell Count , Cell Cycle/genetics , Cell Division , DNA, Plant/biosynthesis , Down-Regulation/genetics , Endoreduplication , Gene Expression Profiling , Kinetics , Mutation/genetics , Organ Size , Phenotype , Plant Leaves/cytology , Plant Leaves/growth & development , Plants, Genetically Modified , Ploidies , Seeds/anatomy & histology , Seeds/physiology , Up-Regulation/genetics
13.
Infect Genet Evol ; 62: 170-178, 2018 08.
Article in English | MEDLINE | ID: mdl-29679745

ABSTRACT

Leishmania donovani is the responsible agent for visceral leishmaniasis (VL) in the Indian subcontinent (ISC). The disease is lethal without treatment and causes 0.2 to 0.4 million cases each year. Recently, reports of VL in Nepalese hilly districts have increased as well as VL cases caused by L. donovani from the ISC1 genetic group, a new and emerging genotype. In this study, we perform for the first time an integrated, untargeted genomics and metabolomics approach to characterize ISC1, in comparison with the Core Group (CG), main population that drove the most recent outbreak of VL in the ISC. We show that the ISC1 population is very different from the CG, both at genome and metabolome levels. The genomic differences include SNPs, CNV and small indels in genes coding for known virulence factors, immunogens and surface proteins. Both genomic and metabolic approaches highlighted dissimilarities related to membrane lipids, the nucleotide salvage pathway and the urea cycle in ISC1 versus CG. Many of these pathways and molecules are important for the interaction with the host/extracellular environment. Altogether, our data predict major functional differences in ISC1 versus CG parasites, including virulence. Therefore, particular attention is required to monitor the fate of this emerging ISC1 population in the ISC, especially in a post-VL elimination context.


Subject(s)
Leishmania donovani/genetics , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Visceral/parasitology , Genome, Protozoan , Genomics , Humans , India/epidemiology , Metabolomics , Polymorphism, Single Nucleotide
14.
Sci Rep ; 7(1): 3725, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28623350

ABSTRACT

High throughput sequencing techniques are poorly adapted for in vivo studies of parasites, which require prior in vitro culturing and purification. Trypanosomatids, a group of kinetoplastid protozoans, possess a distinctive feature in their transcriptional mechanism whereby a specific Spliced Leader (SL) sequence is added to the 5'end of each mRNA by trans-splicing. This allows to discriminate Trypansomatid RNA from mammalian RNA and forms the basis of our new multiplexed protocol for high-throughput, selective RNA-sequencing called SL-seq. We provided a proof-of-concept of SL-seq in Leishmania donovani, the main causative agent of visceral leishmaniasis in humans, and successfully applied the method to sequence Leishmania mRNA directly from infected macrophages and from highly diluted mixes with human RNA. mRNA profiles obtained with SL-seq corresponded largely to those obtained from conventional poly-A tail purification methods, indicating both enumerate the same mRNA pool. However, SL-seq offers additional advantages, including lower sequencing depth requirements, fast and simple library prep and high resolution splice site detection. SL-seq is therefore ideal for fast and massive parallel sequencing of parasite transcriptomes directly from host tissues. Since SLs are also present in Nematodes, Cnidaria and primitive chordates, this method could also have high potential for transcriptomics studies in other organisms.


Subject(s)
5' Untranslated Regions , RNA Splicing , Computational Biology/methods , High-Throughput Nucleotide Sequencing , High-Throughput Screening Assays , Sequence Analysis, RNA , Trans-Splicing , Transcription, Genetic , Trypanosoma/genetics
15.
Plant Physiol ; 169(1): 560-75, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26162427

ABSTRACT

Isoprene emissions from poplar (Populus spp.) plantations can influence atmospheric chemistry and regional climate. These emissions respond strongly to temperature, [CO2], and drought, but the superimposed effect of these three climate change factors are, for the most part, unknown. Performing predicted climate change scenario simulations (periodic and chronic heat and drought spells [HDSs] applied under elevated [CO2]), we analyzed volatile organic compound emissions, photosynthetic performance, leaf growth, and overall carbon (C) gain of poplar genotypes emitting (IE) and nonemitting (NE) isoprene. We aimed (1) to evaluate the proposed beneficial effect of isoprene emission on plant stress mitigation and recovery capacity and (2) to estimate the cumulative net C gain under the projected future climate. During HDSs, the chloroplastidic electron transport rate of NE plants became impaired, while IE plants maintained high values similar to unstressed controls. During recovery from HDS episodes, IE plants reached higher daily net CO2 assimilation rates compared with NE genotypes. Irrespective of the genotype, plants undergoing chronic HDSs showed the lowest cumulative C gain. Under control conditions simulating ambient [CO2], the C gain was lower in the IE plants than in the NE plants. In summary, the data on the overall C gain and plant growth suggest that the beneficial function of isoprene emission in poplar might be of minor importance to mitigate predicted short-term climate extremes under elevated [CO2]. Moreover, we demonstrate that an analysis of the canopy-scale dynamics of isoprene emission and photosynthetic performance under multiple stresses is essential to understand the overall performance under proposed future conditions.


Subject(s)
Butadienes/analysis , Climate Change , Hemiterpenes/analysis , Pentanes/analysis , Populus/chemistry , Carbon/metabolism , Cell Proliferation , Ecosystem , Photosynthesis , Pigmentation , Plant Leaves/chemistry , Time Factors , Volatile Organic Compounds/analysis , Water
16.
New Phytol ; 208(2): 354-69, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26037253

ABSTRACT

Proline (Pro) is a versatile metabolite playing a role in the protection of plants against environmental stresses. To gain a deeper understanding of the regulation of Pro metabolism under predicted future climate conditions, including drought stress, elevated temperature and CO2 , we combined measurements in contrasting grassland species (two grasses and two legumes) at multiple organisational levels, that is, metabolite concentrations, enzyme activities and gene expression. Drought stress (D) activates Pro biosynthesis and represses its catabolism, and elevated temperature (DT) further elevated its content. Elevated CO2 attenuated the DT effect on Pro accumulation. Computational pathway control analysis allowed a mechanistic understanding of the regulatory changes in Pro metabolism. This analysis indicates that the experimentally observed coregulation of multiple enzymes is more effective in modulating Pro concentrations than regulation of a single step. Pyrroline-5-carboxylate synthetase (P5CS) and pyrroline-5-carboxylate reductase (P5CR) play a central role in grasses (Lolium perenne, Poa pratensis), and arginase (ARG), ornithine aminotransferase (OAT) and P5CR play a central role in legumes (Medicago lupulina, Lotus corniculatus). Different strategies in the regulation of Pro concentrations under stress conditions were observed. In grasses the glutamate pathway is activated predominantly, and in the legumes the ornithine pathway, possibly related to differences in N-nutritional status.


Subject(s)
Climate , Grassland , Models, Biological , Proline/metabolism , Glutamic Acid/metabolism , Metabolic Networks and Pathways , Monte Carlo Method , Ornithine/metabolism , Pyrroles/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Species Specificity , Thermodynamics
17.
Glob Chang Biol ; 20(12): 3670-85, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24802996

ABSTRACT

Climate changes increasingly threaten plant growth and productivity. Such changes are complex and involve multiple environmental factors, including rising CO2 levels and climate extreme events. As the molecular and physiological mechanisms underlying plant responses to realistic future climate extreme conditions are still poorly understood, a multiple organizational level analysis (i.e. eco-physiological, biochemical, and transcriptional) was performed, using Arabidopsis exposed to incremental heat wave and water deficit under ambient and elevated CO2 . The climate extreme resulted in biomass reduction, photosynthesis inhibition, and considerable increases in stress parameters. Photosynthesis was a major target as demonstrated at the physiological and transcriptional levels. In contrast, the climate extreme treatment induced a protective effect on oxidative membrane damage, most likely as a result of strongly increased lipophilic antioxidants and membrane-protecting enzymes. Elevated CO2 significantly mitigated the negative impact of a combined heat and drought, as apparent in biomass reduction, photosynthesis inhibition, chlorophyll fluorescence decline, H2 O2 production, and protein oxidation. Analysis of enzymatic and molecular antioxidants revealed that the stress-mitigating CO2 effect operates through up-regulation of antioxidant defense metabolism, as well as by reduced photorespiration resulting in lowered oxidative pressure. Therefore, exposure to future climate extreme episodes will negatively impact plant growth and production, but elevated CO2 is likely to mitigate this effect.


Subject(s)
Arabidopsis/physiology , Carbon Dioxide/metabolism , Climate Change , Droughts , Hot Temperature/adverse effects , Models, Biological , Stress, Physiological/physiology , Analysis of Variance , Antioxidant Response Elements/physiology , Arabidopsis/genetics , Biomass , Computer Simulation , Gene Expression Profiling , Hydrogen Peroxide/metabolism , Microarray Analysis , Photosynthesis/physiology
18.
Nat Rev Mol Cell Biol ; 12(4): 211-21, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21427763

ABSTRACT

Shoot branching is a highly plastic developmental process in which axillary buds are formed in the axil of each leaf and may subsequently be activated to give branches. Three classes of plant hormones, auxins, cytokinins and strigolactones (or strigolactone derivatives) are central to the control of bud activation. These hormones move throughout the plant forming a network of systemic signals. The past decade brought great progress in understanding the mechanisms of shoot branching control. Biological and computational studies have led to the proposal of two models, the auxin transport canalization-based model and the second messenger model, which provide mechanistic explanations for apical dominance.


Subject(s)
Plant Development , Plant Shoots/growth & development , Signal Transduction/physiology , Biological Transport/physiology , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Models, Biological , Plant Growth Regulators/metabolism , Plant Growth Regulators/physiology , Plant Proteins/genetics , Plant Proteins/physiology , Plant Shoots/genetics , Plant Shoots/metabolism , Plants/genetics , Plants/metabolism , Second Messenger Systems/genetics , Second Messenger Systems/physiology , Signal Transduction/genetics
19.
Plant Physiol ; 155(2): 974-87, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21119045

ABSTRACT

The biosynthesis of the recently identified novel class of plant hormones, strigolactones, is up-regulated upon phosphate deficiency in many plant species. It is generally accepted that the evolutionary origin of strigolactone up-regulation is their function as a rhizosphere signal that stimulates hyphal branching of arbuscular mycorrhizal fungi. In this work, we demonstrate that this induction is conserved in Arabidopsis (Arabidopsis thaliana), although Arabidopsis is not a host for arbuscular mycorrhizal fungi. We demonstrate that the increase in strigolactone production contributes to the changes in shoot architecture observed in response to phosphate deficiency. Using high-performance liquid chromatography, column chromatography, and multiple reaction monitoring-liquid chromatography-tandem mass spectrometry analysis, we identified two strigolactones (orobanchol and orobanchyl acetate) in Arabidopsis and have evidence of the presence of a third (5-deoxystrigol). We show that at least one of them (orobanchol) is strongly reduced in the putative strigolactone biosynthetic mutants more axillary growth1 (max1) and max4 but not in the signal transduction mutant max2. Orobanchol was also detected in xylem sap and up-regulated under phosphate deficiency, which is consistent with the idea that root-derived strigolactones are transported to the shoot, where they regulate branching. Moreover, two additional putative strigolactone-like compounds were detected in xylem sap, one of which was not detected in root exudates. Together, these results show that xylem-transported strigolactones contribute to the regulation of shoot architectural response to phosphate-limiting conditions.


Subject(s)
Arabidopsis/metabolism , Lactones/metabolism , Phosphates/metabolism , Plant Growth Regulators/metabolism , Plant Shoots/metabolism , Xylem/metabolism , Arabidopsis/genetics , Biological Transport , Chromatography, High Pressure Liquid , Germination , Lactones/isolation & purification , Mutation , Phosphates/deficiency , Plant Growth Regulators/isolation & purification , Plant Roots/chemistry , Plant Roots/metabolism , Plant Shoots/growth & development , Tandem Mass Spectrometry , Xylem/chemistry
20.
PLoS One ; 5(11): e14012, 2010 Nov 17.
Article in English | MEDLINE | ID: mdl-21103336

ABSTRACT

BACKGROUND: Genetic interactions between phytohormones in the control of flowering time in Arabidopsis thaliana have not been extensively studied. Three phytohormones have been individually connected to the floral-timing program. The inductive function of gibberellins (GAs) is the most documented. Abscisic acid (ABA) has been demonstrated to delay flowering. Finally, the promotive role of brassinosteroids (BRs) has been established. It has been reported that for many physiological processes, hormone pathways interact to ensure an appropriate biological response. METHODOLOGY: We tested possible genetic interactions between GA-, ABA-, and BR-dependent pathways in the control of the transition to flowering. For this, single and double mutants deficient in the biosynthesis of GAs, ABA, and BRs were used to assess the effect of hormone deficiency on the timing of floral transition. Also, plants that over-express genes encoding rate-limiting enzymes in each biosynthetic pathway were generated and the flowering time of these lines was investigated. CONCLUSIONS: Loss-of-function studies revealed a complex relationship between GAs and ABA, and between ABA and BRs, and suggested a cross-regulatory relation between GAs to BRs. Gain-of-function studies revealed that GAs were clearly limiting in their sufficiency of action, whereas increases in BRs and ABA led to a more modest phenotypic effect on floral timing. We conclude from our genetic tests that the effects of GA, ABA, and BR on timing of floral induction are only in partially coordinated action.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Flowers/metabolism , Gibberellins/metabolism , Steroids/metabolism , Abscisic Acid/biosynthesis , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Biosynthetic Pathways , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Flowers/genetics , Flowers/growth & development , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Gibberellins/biosynthesis , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Mutation , Plant Growth Regulators/biosynthesis , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Reverse Transcriptase Polymerase Chain Reaction , Steroids/biosynthesis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...