Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
J Neurol ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802624

ABSTRACT

In the last few years, our understanding of disease molecular mechanisms underpinning ALS has advanced greatly, allowing the first steps in translating into clinical practice novel research findings, including gene therapy approaches. Similarly, the recent advent of assistive technologies has greatly improved the possibility of a more personalized approach to supportive and symptomatic care, in the context of an increasingly complex multidisciplinary line of actions, which remains the cornerstone of ALS management. Against this rapidly growing background, here we provide an comprehensive update on the most recent studies that have contributed towards our understanding of ALS pathogenesis, the latest results from clinical trials as well as the future directions for improving the clinical management of ALS patients.

2.
J Neurol ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597943

ABSTRACT

BACKGROUND: Semantic behavioral variant frontotemporal dementia (sbvFTD) is a neurodegenerative condition presenting with specific behavioral and semantic derangements and predominant atrophy of the right anterior temporal lobe (ATL). The objective was to evaluate clinical, neuropsychological, neuroimaging, and genetic features of an Italian sbvFTD cohort, defined according to recently proposed guidelines, compared to semantic variant primary progressive aphasia (svPPA) and behavioral variant FTD (bvFTD) patients. METHODS: Fifteen sbvFTD, sixty-three bvFTD, and twenty-five svPPA patients and forty controls were enrolled. Patients underwent clinical, cognitive evaluations, and brain MRI. Symptoms of bvFTD patients between onset and first visit were retrospectively recorded and classified as early and late. Grey matter atrophy was investigated using voxel-based morphometry. RESULTS: sbvFTD experienced early criteria-specific symptoms: world, object and person-specific semantic loss (67%), complex compulsions and rigid thought (60%). Sequentially, more behavioral symptoms emerged (apathy/inertia, loss of empathy) along with non-criteria-specific symptoms (anxiety, suspiciousness). sbvFTD showed sparing of attentive/executive functions, especially compared to bvFTD and better language functions compared to svPPA. All sbvFTD patients failed at the famous face recognition test and more than 80% failed in understanding written metaphors and humor. At MRI, sbvFTD had predominant right ATL atrophy, almost specular to svPPA. Three sbvFTD patients presented pathogenic genetic variants. CONCLUSION: We replicated the application of sbvFTD diagnostic guidelines in an independent Italian cohort, demonstrating that the presence of person-specific semantic knowledge loss and mental rigidity, along with preserved executive functions and a predominant right ATL atrophy with sparing of frontal lobes, should prompt a diagnosis of sbvFTD.

3.
Front Neurol ; 15: 1284459, 2024.
Article in English | MEDLINE | ID: mdl-38356886

ABSTRACT

Introduction: High repeat expansion (HRE) alleles in C9orf72 have been linked to both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD); ranges for intermediate allelic expansions have not been defined yet, and clinical interpretation of molecular data lacks a defined genotype-phenotype association. In this study, we provide results from a large multicenter epidemiological study reporting the distribution of C9orf72 repeats in healthy elderly from the Italian population. Methods: A total of 967 samples were collected from neurologically evaluated healthy individuals over 70 years of age in the 13 institutes participating in the RIN (IRCCS Network of Neuroscience and Neurorehabilitation) based in Italy. All samples were genotyped using the AmplideXPCR/CE C9orf72 Kit (Asuragen, Inc.), using standardized protocols that have been validated through blind proficiency testing. Results: All samples carried hexanucleotide G4C2 expansion alleles in the normal range. All samples were characterized by alleles with less than 25 repeats. In particular, 93.7% of samples showed a number of repeats ≤10, 99.9% ≤20 repeats, and 100% ≤25 repeats. Conclusion: This study describes the distribution of hexanucleotide G4C2 expansion alleles in an Italian healthy population, providing a definition of alleles associated with the neurological healthy phenotype. Moreover, this study provides an effective model of federation between institutes, highlighting the importance of sharing genomic data and standardizing analysis techniques, promoting translational research. Data derived from the study may improve genetic counseling and future studies on ALS/FTD.

4.
J Neurol ; 271(3): 1342-1354, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37930481

ABSTRACT

BACKGROUND AND OBJECTIVES: Amyotrophic lateral sclerosis associated with mutations in SOD1 (SOD1-ALS) might be susceptible to specific treatment. The aim of the study is to outline the clinical features of SOD1-ALS patients by comparing them to patients without ALS major gene variants and patients with variants in other major ALS genes. Defining SOD1-ALS phenotype may assist clinicians in identifying patients who should be prioritized for genetic testing. METHODS: We performed an extensive literature research including original studies which reported the clinical features of SOD1-ALS and at least one of the following patient groups: C9ORF72 hexanucleotide repeat expansion (C9-ALS), TARDBP (TARDBP-ALS), FUS (FUS-ALS) or patients without a positive test for a major-ALS gene (N-ALS). A random effects meta-analytic model was applied to clinical data extracted encompassing sex, site and age of onset. To reconstruct individual patient survival data, the published Kaplan-Meier curves were digitized. Data were measured as odds ratio (OR) or standardized mean difference (SMD) as appropriate. Median survival was compared between groups. RESULTS: Twenty studies met the inclusion criteria. We identified 721 SOD1-ALS, 470 C9-ALS, 183 TARDBP-ALS, 113 FUS-ALS and 2824 N-ALS. SOD1-ALS showed a higher rate of spinal onset compared with N-ALS and C9-ALS (OR = 4.85, 95% CI = 3.04-7.76; OR = 10.47, 95% CI = 4.32-27.87) and an earlier onset compared with N-ALS (SMD = - 0.45, 95% CI = - 0.72 to - 0.18). SOD1-ALS had a similar survival compared with N-ALS (p = 0.14), a longer survival compared with C9-ALS (p < 0.01) and FUS-ALS (p = 0.019) and a shorter survival compared with TARDBP-ALS (p < 0.01). DISCUSSION: This study indicates the presence of a specific SOD1-ALS phenotype. Insights in SOD1-ALS clinical features are important in genetic counseling, disease prognosis and support patients' stratification in clinical trials.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Superoxide Dismutase-1/genetics , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/genetics , Phenotype , Genetic Testing , Mutation , C9orf72 Protein/genetics , RNA-Binding Protein FUS/genetics
5.
Front Neurosci ; 17: 1204504, 2023.
Article in English | MEDLINE | ID: mdl-37383099

ABSTRACT

Objectives: We report the clinical presentation and evolution of a case with a novel Progranulin gene (GRN) mutation and non-fluent language disturbances at onset. Materials and methods: A 60 year-old, white patient was followed due to a history of language disturbances. Eighteen months after onset, the patient underwent FDG positron emission tomography (PET), and at month 24 was hospitalized to perform neuropsychological evaluation, brain 3 T MRI, lumbar puncture for cerebrospinal fluid (CSF) analysis, and genotyping. At month 31, the patient repeated the neuropsychological evaluation and brain MRI. Results: At onset the patient complained prominent language production difficulties, such as effortful speech and anomia. At month 18, FDG-PET showed left fronto-temporal and striatal hypometabolism. At month 24, the neuropsychological evaluation reported prevalent speech and comprehension deficits. Brain MRI reported left fronto-opercular and striatal atrophy, and left frontal periventricular white matter hyperintensities (WMHs). Increased CSF total tau level was observed. Genotyping revealed a new GRN c.1018delC (p.H340TfsX21) mutation. The patient received a diagnosis of non-fluent variant of primary progressive aphasia (nfvPPA). At month 31, language deficits worsened, together with attention and executive functions. The patient presented also with behavioral disturbances, and a progressive atrophy in the left frontal-opercular and temporo-mesial region. Discussion and conclusion: The new GRN p.H340TfsX21 mutation resulted in a case of nfvPPA characterized by fronto-temporal and striatal alterations, typical frontal asymmetric WMHs, and a fast progression toward a widespread cognitive and behavioral impairment, which reflects a frontotemporal lobar degeneration. Our findings extend the current knowledge of the phenotypic heterogeneity among GRN mutation carriers.

7.
Neurology ; 101(8): 352-356, 2023 08 22.
Article in English | MEDLINE | ID: mdl-36927885

ABSTRACT

OBJECTIVES: Differentiation between primary (PLS) and amyotrophic lateral sclerosis (ALS) entails relevant consequences for prognosis and management but is mostly unreliable at early stages. The objectives of the study are (1) to determine the features at onset that could help to differentiate between PLS and ALS, (2) to evaluate the diagnostic performance of an integrated serum biomarker panel, and (3) to identify the prognostic factors for patients presenting with upper motor neuron (UMN) syndrome. METHODS: We selected and retrospectively analyzed the clinical data of patients presenting with UMN syndrome. At the first evaluation, when available, serum biomarkers were measured using ultrasensitive single molecule array. RESULTS: The study population included 55 patients with PLS and 50 patients with ALS. Patients with PLS presented a longer time to first neurologic evaluation (PLS: 35.0 months, interquartile range [IQR] 17.0-38.0 months; ALS: 12.5 months, IQR 7.0-21.3 months; p < 0.01) and lower levels of neurofilament light chain (NfL) (PLS: 81.8 pg/mL, IQR 38.4-111.1 pg/mL; ALS: 155.9 pg/mL, IQR 85.1-366.4 pg/mL; p = 0.01). Two patients with PLS and 3 patients with ALS carried the C9orf72 expansion. NfL resulted an independent predictor of final diagnosis (odds ratio 1.01, 95% CI 1.00-1.02; p = 0.04) and an independent prognostic factor (hazard ratio 1.01, 95% CI 1.00-1.01; p < 0.01). DISCUSSION: NfL might help to differentiate patients with PLS from patients with ALS and to predict prognosis in patients with UMN syndrome.


Subject(s)
Amyotrophic Lateral Sclerosis , Motor Neuron Disease , Humans , Amyotrophic Lateral Sclerosis/diagnosis , Retrospective Studies , Motor Neurons , Biomarkers , Prognosis , Motor Neuron Disease/diagnosis
8.
Front Oncol ; 12: 974751, 2022.
Article in English | MEDLINE | ID: mdl-36226068

ABSTRACT

Although inflammation appears to play a role in neurolymphomatosis (NL), the mechanisms leading to degeneration in the peripheral nervous system are poorly understood. The purpose of this exploratory study was to identify molecular pathways underlying NL pathogenesis, combining clinical and neuropathological investigation with gene expression (GE) studies. We characterized the clinical and pathological features of eight patients with NL. We further analysed GE changes in sural nerve biopsies obtained from a subgroup of NL patients (n=3) and thirteen patients with inflammatory neuropathies as neuropathic controls. Based on the neuropathic symptoms and signs, NL patients were classified into three forms of neuropathy: chronic symmetrical sensorimotor polyneuropathy (SMPN, n=3), multiple mononeuropathy (MN, n=4) and acute motor-sensory axonal neuropathy (AMSAN, n=1). Predominantly diffuse malignant cells infiltration of epineurium was present in chronic SMPN, whereas endoneurial perivascular cells invasion was observed in MN. In contrast, diffuse endoneurium malignant cells localization occurred in AMSAN. We identified alterations in the expression of 1266 genes, with 115 up-regulated and 1151 down-regulated genes, which were mainly associated with ribosomal proteins (RP) and olfactory receptors (OR) signaling pathways, respectively. Among the top up-regulated genes were actin alpha 1 skeletal muscle (ACTA1) and desmin (DES). Similarly, in NL nerves ACTA1, DES and several RPs were highly expressed, associated with endothelial cells and pericytes abnormalities. Peripheral nerve involvement may be due to conversion towards a more aggressive phenotype, potentially explaining the poor prognosis. The candidate genes reported in this study may be a source of clinical biomarkers for NL.

9.
Front Neurol ; 13: 931006, 2022.
Article in English | MEDLINE | ID: mdl-35911889

ABSTRACT

Objective: Mutations in the TARDBP gene are a rare cause of genetic motor neuron disease (MND). Morphologic MRI characteristics of MND patients carrying this mutation have been poorly described. Our objective was to investigate distinctive clinical and MRI features of a relatively large sample of MND patients carrying TARDBP mutations. Methods: Eleven MND patients carrying a TARDBP mutation were enrolled. Eleven patients with sporadic MND (sMND) and no genetic mutations were also selected and individually matched by age, sex, clinical presentation and disease severity, along with 22 healthy controls. Patients underwent clinical and cognitive evaluations, as well as 3D T1-weighted and diffusion tensor (DT) MRI on a 3 Tesla scanner. Gray matter (GM) atrophy was first investigated at a whole-brain level using voxel-based morphometry (VBM). GM volumes and DT MRI metrics of the main white matter (WM) tracts were also obtained. Clinical, cognitive and MRI features were compared between groups. Results: MND with TARDBP mutations was associated with all possible clinical phenotypes, including isolated upper/lower motor neuron involvement, with no predilection for bulbar or limb involvement at presentation. Greater impairment at naming tasks was found in TARDBP mutation carriers compared with sMND. VBM analysis showed significant atrophy of the right lateral parietal cortex in TARDBP patients, compared with controls. A distinctive reduction of GM volumes was found in the left precuneus and right angular gyrus of TARDBP patients compared to controls. WM microstructural damage of the corticospinal tract (CST) and inferior longitudinal fasciculi (ILF) was found in both sMND and TARDBP patients, compared with controls, although decreased fractional anisotropy of the right CST and increased axial diffusivity of the left ILF (p = 0.017) was detected only in TARDBP mutation carriers. Conclusions: TARDBP patients showed a distinctive parietal pattern of cortical atrophy and greater damage of motor and extra-motor WM tracts compared with controls, which sMND patients matched for disease severity and clinical presentation were lacking. Our findings suggest that TDP-43 pathology due to TARDBP mutations may cause deeper morphologic alterations in both GM and WM.

10.
Front Neurosci ; 16: 833051, 2022.
Article in English | MEDLINE | ID: mdl-35495032

ABSTRACT

Introduction: In the last few years, different studies highlighted a significant enrichment of NEK1 loss of function (LoF) variants in amyotrophic lateral sclerosis (ALS), and an additional role for the p.Arg261His missense variant in the disease susceptibility. Several other missense variants have been described so far, whose pathogenic relevance remains however unclear since many of them have been reported in both patients and controls. This study aimed to investigate the presence of NEK1 variants and their correlation with phenotype in a cohort of Italian patients with ALS. Methods: We sequenced a cohort of 350 unrelated Italian patients with ALS by next-generation sequencing (NGS) and then we analyzed the clinical features of NEK1 carriers. Results: We detected 20 different NEK1 rare variants (four LoF and 16 missense) in 33 unrelated patients with sporadic ALS (sALS). The four LoF variants (two frameshift and two splice-site variants) were all novel. The p.Arg261His missense variant was enriched in the patients' cohort (p < 0.001). Excluding this variant from counting, the difference in the frequency of NEK1 rare missense variants between patients and controls was not statistically significant. NEK1 carriers had a higher frequency of flail arm (FA) phenotype compared with the other patients of the cohort (29.2% vs. 6.4%). Nine NEK1 carriers (37.5%) also harbored variants in other ALS-related genes. Conclusion: This study confirms that NEK1 LoF and p.Arg261. His missense variants are associated with ALS in an Italian ALS cohort and suggests a correlation between the presence of NEK1 variants and FA phenotype.

11.
Front Med (Lausanne) ; 9: 832344, 2022.
Article in English | MEDLINE | ID: mdl-35252263

ABSTRACT

Chemotherapy-induced neurotoxicity is an increasingly recognized clinical issue in oncology. in vivo confocal microscopy (IVCM) of corneal nerves has been successfully used to diagnose peripheral neuropathies, including diabetic neuropathy. The purpose of this study was to test if the combination of corneal nerve density and morphology assessed by IVCM is useful to monitor the neurotoxic effects of chemotherapy compared to epidermal nerve quantification. Overall, 95 adult patients with different cancer types were recruited from the oncology and hematology departments of the San Raffaele Hospital. Neurological examination, including clinical Total Neuropathy Score, and in vivo corneal confocal microscopy (IVCM), were performed before and after chemotherapy. In a group of 14 patients, skin biopsy was performed at the first and last visit. In the group of 14 patients who underwent both skin biopsy and corneal nerve imaging, clinical worsening (+69%, p = 0.0018) was paralleled by corneal nerve fiber (CNF) density reduction (-22%, p = 0.0457). Clinical Total neuropathy score significantly worsened from the first to the last visit (+62%, p < 0.0001). CNF length was not significantly reduced overall. However, CNF density/tortuosity ratio significantly decreased after therapy. Correlation analysis showed that the CNF density/tortuosity ratio was also correlated with the number of chemotherapy cycles (r = -0.04790, P = 0.0009). Our data confirm that in vivo corneal confocal microscopy is a helpful, non-invasive tool which shows promise for the diagnosis of chemotherapy-induced peripheral neuropathies. IVCM could allow a rapid, reproducible and non-invasive quantification of peripheral nerve pathology in chemotherapy-associated neuropathy.

12.
Eur J Neurol ; 29(7): 1930-1939, 2022 07.
Article in English | MEDLINE | ID: mdl-35263489

ABSTRACT

BACKGROUND AND PURPOSE: This study was undertaken to determine the diagnostic and prognostic value of a panel of serum biomarkers and to correlate their concentrations with several clinical parameters in a large cohort of patients with amyotrophic lateral sclerosis (ALS). METHODS: One hundred forty-three consecutive patients with ALS and a control cohort consisting of 70 patients with other neurodegenerative disorders (DEG), 70 patients with ALS mimic disorders (ALSmd), and 45 healthy controls (HC) were included. Serum neurofilament light chain (NfL), ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1), glial fibrillary acidic protein (GFAP), and total tau protein levels were measured using ultrasensitive single molecule array. RESULTS: NfL correlated with disease progression rate (p < 0.001) and with the measures of upper motor neuron burden (p < 0.001). NfL was higher in the ALS patients with classic and pyramidal phenotype. GFAP was raised in ALS with cognitive-behavioral impairment compared with ALS with normal cognition. NfL displayed the best diagnostic performance in discriminating ALS from HC (area under the curve [AUC] = 0.990), DEG (AUC = 0.946), and ALSmd (AUC = 0.850). UCHL1 performed well in distinguishing ALS from HC (AUC = 0.761), whereas it was not helpful in differentiating ALS from DEG and ALSmd. In multivariate analysis, NfL (p < 0.001) and UCHL1 (p = 0.038) were independent prognostic factors. Survival analysis combining NfL and UCHL1 effectively stratified patients with lower NfL levels (p < 0.001). CONCLUSIONS: NfL is a useful biomarker for the diagnosis of ALS and the strongest predictor of survival. UCHL1 is an independent prognostic factor helpful in stratifying survival in patients with low NfL levels, likely to have slowly progressive disease. GFAP reflects extramotor involvement, namely cognitive impairment or frontotemporal dementia.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/diagnosis , Biomarkers , Cohort Studies , Humans , Neurofilament Proteins , Prognosis
13.
Article in English | MEDLINE | ID: mdl-34874217

ABSTRACT

Aim: The aim of the present metanalysis is to evaluate blood and CSF Neurofilament light chain (NfL) concentrations in ALS patients, compared to healthy controls, ALS mimic disorders (ALSmd) and other neurological diseases (OND), and to evaluate their diagnostic yield against ALSmd. Methods: Search engines were systematically investigated for relevant studies. A random effect model was applied to estimate the pooled standard mean difference in NfL levels between ALS and controls and a bivariate mixed-effects model was applied to estimate their diagnostic accuracy on blood and CSF. Results and conclusions: NfL CSF levels were higher in ALS compared with all other control groups. On blood, NfL levels were significantly higher in ALS patients compared with healthy controls and ALSmd. In a subgroup analysis, the use of SIMOA yielded to a better differentiation between ALS and controls on blood, compared with ELISA. Studies performed on CSF (AUC = 0.90) yielded to better diagnostic performances compared with those conducted on blood (AUC = 0.78). Further prospective investigations are needed to determine a diagnostic cutoff, exploitable in clinical practice.


Subject(s)
Amyotrophic Lateral Sclerosis , Amyotrophic Lateral Sclerosis/diagnosis , Biomarkers , Enzyme-Linked Immunosorbent Assay , Humans , Intermediate Filaments , Neurofilament Proteins
14.
Neurology ; 97(16): e1594-e1607, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34544819

ABSTRACT

BACKGROUND AND OBJECTIVES: To assess cortical, subcortical, and cerebellar gray matter (GM) atrophy using MRI in patients with disorders of the frontotemporal lobar degeneration (FTLD) spectrum with known genetic mutations. METHODS: Sixty-six patients carrying FTLD-related mutations were enrolled, including 44 with pure motor neuron disease (MND) and 22 with frontotemporal dementia (FTD). Sixty-one patients with sporadic FTLD (sFTLD) matched for age, sex, and disease severity with genetic FTLD (gFTLD) were also included, as well as 52 healthy controls. A whole-brain voxel-based morphometry (VBM) analysis was performed. GM volumes of subcortical and cerebellar structures were obtained. RESULTS: Compared with controls, GM atrophy on VBM was greater and more diffuse in genetic FTD, followed by sporadic FTD and genetic MND cases, whereas patients with sporadic MND (sMND) showed focal motor cortical atrophy. Patients carrying C9orf72 and GRN mutations showed the most widespread cortical volume loss, in contrast with GM sparing in SOD1 and TARDBP. Globally, patients with gFTLD showed greater atrophy of parietal cortices and thalami compared with sFTLD. In volumetric analysis, patients with gFTLD showed volume loss compared with sFTLD in the caudate nuclei and thalami, in particular comparing C9-MND with sMND cases. In the cerebellum, patients with gFTLD showed greater atrophy of the right lobule VIIb than sFTLD. Thalamic volumes of patients with gFTLD with a C9orf72 mutation showed an inverse correlation with Frontal Behavioral Inventory scores. DISCUSSION: Measures of deep GM and cerebellar structural involvement may be useful markers of gFTLD, particularly C9orf72-related disorders, regardless of the clinical presentation within the FTLD spectrum.


Subject(s)
Frontotemporal Lobar Degeneration/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Motor Neuron Disease/diagnostic imaging , Neuroimaging/methods , Adult , Aged , Brain/diagnostic imaging , Brain/pathology , Case-Control Studies , Female , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/pathology , Humans , Male , Middle Aged , Motor Neuron Disease/genetics , Motor Neuron Disease/pathology
15.
Neural Regen Res ; 16(10): 1985-1991, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33642372

ABSTRACT

Motor neuron disease includes a heterogeneous group of relentless progressive neurological disorders defined and characterized by the degeneration of motor neurons. Amyotrophic lateral sclerosis is the most common and aggressive form of motor neuron disease with no effective treatment so far. Unfortunately, diagnostic and prognostic biomarkers are lacking in clinical practice. Neurofilaments are fundamental structural components of the axons and neurofilament light chain and phosphorylated neurofilament heavy chain can be measured in both cerebrospinal fluid and serum. Neurofilament light chain and phosphorylated neurofilament heavy chain levels are elevated in amyotrophic lateral sclerosis, reflecting the extensive damage of motor neurons and axons. Hence, neurofilaments are now increasingly recognized as the most promising candidate biomarker in amyotrophic lateral sclerosis. The potential usefulness of neurofilaments regards various aspects, including diagnosis, prognosis, patient stratification in clinical trials and evaluation of treatment response. In this review paper, we review the body of literature about neurofilaments measurement in amyotrophic lateral sclerosis. We also discuss the open issues concerning the use of neurofilaments clinical practice, as no overall guideline exists to date; finally, we address the most recent evidence and future perspectives.

17.
Int J Mol Sci ; 21(9)2020 May 08.
Article in English | MEDLINE | ID: mdl-32397312

ABSTRACT

Although the genetic architecture of amyotrophic lateral sclerosis (ALS) is incompletely understood, recent findings suggest a complex model of inheritance in ALS, which is consistent with a multistep pathogenetic process. Therefore, the aim of our work is to further explore the architecture of ALS using targeted next generation sequencing (NGS) analysis, enriched in motor neuron diseases (MND)-associated genes which are also implicated in axonal hereditary motor neuropathy (HMN), in order to investigate if disease expression, including the progression rate, could be influenced by the combination of multiple rare gene variants. We analyzed 29 genes in an Italian cohort of 83 patients with both familial and sporadic ALS. Overall, we detected 43 rare variants in 17 different genes and found that 43.4% of the ALS patients harbored a variant in at least one of the investigated genes. Of note, 27.9% of the variants were identified in other MND- and HMN-associated genes. Moreover, multiple gene variants were identified in 17% of the patients. The burden of rare variants is associated with reduced survival and with the time to reach King stage 4, i.e., the time to reach the need for percutaneous endoscopic gastrostomy (PEG) positioning or non-invasive mechanical ventilation (NIMV) initiation, independently of known negative prognostic factors. Our data contribute to a better understanding of the molecular basis of ALS supporting the hypothesis that rare variant burden could play a role in the multistep model of disease and could exert a negative prognostic effect. Moreover, we further extend the genetic landscape of ALS to other MND-associated genes traditionally implicated in degenerative diseases of peripheral axons, such as HMN and CMT2.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/mortality , Motor Neuron Disease/genetics , Muscular Atrophy, Spinal/genetics , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , High-Throughput Nucleotide Sequencing , Humans , Italy , Kaplan-Meier Estimate , Male , Middle Aged , Motor Neuron Disease/mortality , Muscular Atrophy, Spinal/mortality , Polymorphism, Single Nucleotide , Prognosis
18.
J Neurol ; 267(8): 2272-2280, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32306171

ABSTRACT

To investigate the prognostic role and the major determinants of serum phosphorylated neurofilament heavy -chain (pNfH) concentration across a large cohort of motor neuron disease (MND) phenotypes. Enzyme-linked immunosorbent assay (ELISA) was used to measure serum pNfH concentration in 219 MND patients consecutively enrolled in our tertiary MND clinic. A multifactorial analysis was carried out to investigate the major clinical determinants of serum pNfH. Kaplan-Meier survival curves and Cox regression analysis were performed to explore the prognostic value of serum pNfH. Serum pNfH levels were not homogenous among MND phenotypes; higher concentrations in pyramidal, bulbar, and classic phenotypes were observed. C9orf72-MND exhibited higher pNfH concentrations compared to non-C9orf72 MND. Multiple linear regression analysis revealed mean MEP/cMAP and disease progression rate as the two major predictors of serum pNfH levels (R2 = 0.188; p ≤ 0.001). Kaplan-Meier curves showed a significant difference of survival among MND subgroups when divided into quartiles based on pNfH concentrations, log-rank X2 = 53.0, p ≤ 0.0001. Our study evidenced that higher serum pNfH concentration is a negative independent prognostic factor for survival. In Cox multivariate model, pNfH concentration showed the highest hazard ratio compared to the other factors influencing survival included in the analysis. pNfH differs among the MND phenotypes and is an independent prognostic factor for survival. This study provides supporting evidence of the role of pNfH as useful prognostic biomarker for MND patients. Neurofilament measurements should be considered in the future prognostic models and in clinical trials for biomarker-based stratification, and to evaluate treatment response.


Subject(s)
Amyotrophic Lateral Sclerosis , Motor Neuron Disease , Biomarkers , Humans , Intermediate Filaments , Neurofilament Proteins , Phenotype
19.
Article in English | MEDLINE | ID: mdl-31007077

ABSTRACT

We describe a patient, previously known for NMOSD, who presented a rapidly progressive worsening of muscle strength, respiratory, and bulbar functions. ALS associated with cognitive impairment was diagnosed, while genetic analysis revealed a hexanucleotide repeat expansion in the C9orf72 gene. To the best of our knowledge, this is the first reported C9orf72-ALS patient with concurrent NMOSD. In consideration of the low prevalence of these two diseases, a by-chance co-occurrence is unlikely. Although the discovery of a disease-specific serum AQP4-IgG antibody has led to a broadening of the NMOSD, a progressive neurological deterioration, as shown by our patient, should be considered as a "red flag", leading to alternative diagnostic hypotheses. Our report supports the hypothesis that in C9orf72-ALS neuroinflammation may contribute to disease penetrance or to determine an aggressive clinical phenotype. Further investigations are needed in order to establish possible shared neuroinflammatory patterns between ALS, NMOSD, and other neuroinflammatory disorders.


Subject(s)
Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , DNA Repeat Expansion/genetics , Neuromyelitis Optica/diagnostic imaging , Neuromyelitis Optica/genetics , Amyotrophic Lateral Sclerosis/complications , Humans , Male , Middle Aged , Neuromyelitis Optica/complications
20.
J Neurol Neurosurg Psychiatry ; 88(10): 869-875, 2017 10.
Article in English | MEDLINE | ID: mdl-28822984

ABSTRACT

BACKGROUND: TANK-binding kinase 1 (TBK1) gene has been recently identified as a causative gene of amyotrophic lateral sclerosis (ALS). METHODS: We sequenced the TBK1 gene in a cohort of 154 Italian patients with ALS with unclear genetic aetiology. We subsequently assessed the pathogenic potential of novel identified TBK1 variants using functional in vitro studies: expression, targeting and activity were evaluated in patient-derived fibroblasts and in cells transfected with mutated-TBK1 plasmids. RESULTS: We identified novel genomic TBK1 variants including two loss-of-function (LoF) (p.Leu59Phefs*16 and c.358+5G>A), two missense (p.Asp118Asn and p.Ile397Thr) and one intronic variant (c.1644-5_1644-2delAATA), in addition to two previously reported pathogenetic missense variants (p.Lys291Glu and p.Arg357Gln). Functional studies in patient-derived fibroblasts revealed that the c.358+5G>A causes aberrant pre-mRNA processing leading TBK1 haploinsufficiency. Biochemical studies in cellular models showed that the truncating variant p.Leu59Phefs*16 abolishes TBK1 protein expression, whereas the p.Asp118Asn variant severely impairs TBK1 phosphorylation activity. Conversely, the p.Ile397Thr variant displayed enhanced phosphorylation activity, whose biological relevance is not clear. CONCLUSION: The observed frequency of TBK1 LoF variants was 1.3% (2/154), increasing up to 3.2% (5/154) by taking into account also the functional missense variants that we were able to classify as potentially pathogenic, supporting the relevance of TBK1 in the Italian population with ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Mutation , Protein Serine-Threonine Kinases/genetics , Adult , Aged , Cohort Studies , Female , Humans , Italy , Male , Middle Aged , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...