Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Brain Sci ; 12(9)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36138983

ABSTRACT

We standardized a model by injecting Ehrlich tumor cells into the paw to evaluate cancer pain mechanisms and pharmacological treatments. Opioid treatment, but not cyclooxygenase inhibitor or tricyclic antidepressant treatments reduces Ehrlich tumor pain. To best use this model for drug screening it is essential to understand its pathophysiological mechanisms. Herein, we investigated the contribution of the transient receptor potential cation channel subfamily V member 1 (TRPV1) in the Ehrlich tumor-induced pain model. Dorsal root ganglia (DRG) neurons from the Ehrlich tumor mice presented higher activity (calcium levels using fluo-4 fluorescent probe) and an increased response to capsaicin (TRPV1 agonist) than the saline-injected animals (p < 0.05). We also observed diminished mechanical (electronic von Frey) and thermal (hot plate) hyperalgesia, paw flinching, and normalization of weight distribution imbalance in TRPV1 deficient mice (p < 0.05). On the other hand, TRPV1 deficiency did not alter paw volume or weight, indicating no significant alteration in tumor growth. Intrathecal injection of AMG9810 (TRPV1 antagonist) reduced ongoing Ehrlich tumor-triggered mechanical and thermal hyperalgesia (p < 0.05). Therefore, the contribution of TRPV1 to Ehrlich tumor pain behavior was revealed by genetic and pharmacological approaches, thus, supporting the use of this model to investigate TRPV1-targeting therapies for the treatment of cancer pain.

2.
J Ethnopharmacol ; 283: 114708, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34619320

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Sphagneticola trilobata (L.) Pruski is used in traditional medicine in Brazil for inflammatory diseases treatment including asthma. The diterpene kaurenoic acid (KA) is one of its active compounds, but whether KA activity could explain the traditional use of S. trilobata in asthma is unknown. AIM: Investigate KA effect and mechanisms in asthma. METHODS: Experimental asthma was induced by ovalbumin immunization and challenge in male Swiss mice. KA (0.1-10 mg/kg, gavage) was administered 1 h before the ovalbumin challenge. Total leukocytes, eosinophil, and mast cell were counted in bronchoalveolar lavage fluid (BALF), and lung histopathology was performed. Lung mRNA expression of Th2 and regulatory T cells markers, and BALF type 2 cytokine production were quantitated. NFκB activation and oxidative stress-related components in pulmonary tissue were measured. RESULTS: KA inhibited the migration of total leukocytes and eosinophils to BALF, reduced lung histopathology (inflammatory cells and mast cells), mRNA expression of IL-33/ST2, STAT6/GATA-3 and NFκB activation in the lung, and reduced IL-33, IL-4, IL-5 production in the BALF. KA also reduced the mRNA expression of iNOS and gp91phox, and superoxide anion production accompanied by the induction of Nrf2, HO-1 and NQO1 mRNA expression, thus, exerting an antioxidant effect. Finally, KA induced nTreg-like and Tr1-like, but not Th3-like markers of suppressive T cell phenotypes in the lung tissue. CONCLUSION: KA prevents antigen-induced asthma by down-regulating Th2 and NFκB/cytokine-related pathways, and up-regulating Nrf2 and regulatory T cells' markers. Thus, explaining the ethnopharmacological use of S. trilobata for the treatment of lung inflammatory diseases.


Subject(s)
Asteraceae/chemistry , Asthma/drug therapy , Cytokines/metabolism , Diterpenes/pharmacology , Animals , Disease Models, Animal , Diterpenes/administration & dosage , Diterpenes/isolation & purification , Dose-Response Relationship, Drug , GATA3 Transcription Factor/metabolism , Male , Mice , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Ovalbumin/immunology , STAT6 Transcription Factor/metabolism , Th2 Cells/immunology
3.
Mediators Inflamm ; 2019: 6481812, 2019.
Article in English | MEDLINE | ID: mdl-31049025

ABSTRACT

Clinically active drugs for the treatment of acute pain have their prescription limited due to the significant side effects they induce. An increase in reactive oxygen species (ROS) has been linked to several conditions, including inflammation and pain processing. Therefore, new or repurposed drugs with the ability of reducing ROS-triggered responses are promising candidates for analgesic drugs. Vinpocetine is a clinically used nootropic drug with antioxidant, anti-inflammatory, and analgesic properties. However, the effects of vinpocetine have not been investigated in a model with a direct relationship between ROS, inflammation, and pain. Based on that, we aimed to investigate the effects of vinpocetine in a model of superoxide anion-induced pain and inflammation using potassium superoxide (KO2) as a superoxide anion donor to trigger inflammation and pain. In the KO2 model, vinpocetine dose-dependently reduced pain-like behaviors (spontaneous pain and hyperalgesia), paw edema, and neutrophil and mononuclear cell recruitment to the paw skin (assessed by H&E staining, fluorescence, and enzymatic assays) and to the peritoneal cavity. Vinpocetine also restored tissue endogenous antioxidant ability and Nrf2 and Ho-1 mRNA expression and reduced superoxide anion production and gp91phox mRNA expression. We also observed the inhibition of IκBα degradation by vinpocetine, which demonstrates a reduction in the activation of NF-κB explaining the diminished production of IL-33, IL-1ß, and TNF-α. Collectively, our data show that vinpocetine alleviates pain and inflammation induced by KO2, which is a mouse model with a direct role of ROS in triggering pain and other inflammatory phenomena. Thus, the results suggest the repurposing of vinpocetine as an anti-inflammatory and analgesic drug.


Subject(s)
Analgesics/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Drug Repositioning/methods , Inflammation/drug therapy , Inflammation/metabolism , Nootropic Agents/therapeutic use , Superoxides/toxicity , Vinca Alkaloids/therapeutic use , Animals , Cytokines/metabolism , Disease Models, Animal , Edema/drug therapy , Edema/metabolism , Heme Oxygenase-1 , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Male , Membrane Proteins , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
4.
J Neuroinflammation ; 16(1): 113, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31138231

ABSTRACT

BACKGROUND: The cellular and molecular pathophysiological mecha\nisms of pain processing in neglected parasitic infections such as leishmaniasis remain unknown. The present study evaluated the participation of spinal cord glial cells in the pathophysiology of pain induced by Leishmania amazonensis infection in BALB/c mice. METHODS: Mice received intra-plantar (i.pl.) injection of L. amazonensis (1 × 105) and hyperalgesia, and paw edema were evaluated bilaterally for 40 days. The levels of TNF-α and IL-1ß, MPO activity, and histopathology were assessed on the 40th day. ATF3 mRNA expression was assessed in DRG cells at the 30th day post-infection. Blood TNF-α and IL-1ß levels and systemic parasite burden were evaluated 5-40 days after the infection. At the 30th day post-infection L. amazonensis, the effects of intrathecal (i.t.) treatments with neutralizing antibody anti-CX3CL1, etanercept (soluble TNFR2 receptor), and interleukin-1 receptor antagonist (IL-1ra) on infection-induced hyperalgesia and paw edema were assessed. In another set of experiments, we performed a time course analysis of spinal cord GFAP and Iba-1 (astrocytes and microglia markers, respectively) and used confocal immunofluorescence and Western blot to confirm the expression at the protein level. Selective astrocyte (α-aminoadipate) and microglia (minocycline) inhibitors were injected i.t. to determine the contribution of these cells to hyperalgesia and paw edema. The effects of i.t. treatments with glial and NFκB (PDTC) inhibitors on spinal glial activation, TNF-α, IL-1ß, CX3CR1 and CX3CL1 mRNA expression, and NFκB activation were also evaluated. Finally, the contribution of TNF-α and IL-1ß to CX3CL1 mRNA expression was investigated. RESULTS: L. amazonensis infection induced chronic mechanical and thermal hyperalgesia and paw edema in the infected paw. Mechanical hyperalgesia was also observed in the contralateral paw. TNF-α, IL-1ß, MPO activity, and epidermal/dermal thickness increased in the infected paw, which confirmed the peripheral inflammation at the primary foci of this infection. ATF3 mRNA expression at the ipsilateral DRG of the infected paw was unaltered 30 days post-infection. TNF-α and IL-1ß blood levels were not changed over the time course of disease, and parasitism increased in a time-dependent manner in the ipsilateral draining lymph node. Treatments targeting CX3CL1, TNF-α, and IL-1ß inhibited L. amazonensis-induced ongoing mechanical and thermal hyperalgesia, but not paw edema. A time course of GFAP, Iba-1, and CX3CR1 mRNA expression indicated spinal activation of astrocytes and microglia, which was confirmed at the GFAP and Iba-1 protein level at the peak of mRNA expression (30th day). Selective astrocyte and microglia inhibition diminished infection-induced ipsilateral mechanical hyperalgesia and thermal hyperalgesia, and contralateral mechanical hyperalgesia, but not ipsilateral paw edema. Targeting astrocytes, microglia and NFκB diminished L. amazonensis-induced GFAP, Iba-1, TNF-α, IL-1ß, CX3CR1 and CX3CL1 mRNA expression, and NFκB activation in the spinal cord at the peak of spinal cord glial cells activation. CX3CL1 mRNA expression was also detected in the ipsilateral DRG of infected mice at the 30th day post-infection, and the i.t. injection of TNF-α or IL-1ß in naïve animals induced CX3CL1 mRNA expression in the spinal cord and ipsilateral DRG. CONCLUSIONS: L. amazonensis skin infection produces chronic pain by central mechanisms involving spinal cord astrocytes and microglia-related production of cytokines and chemokines, and NFκB activation contributes to L. amazonensis infection-induced hyperalgesia and neuroinflammation.


Subject(s)
Edema/pathology , Hyperalgesia/pathology , Leishmaniasis/pathology , Neuroglia/pathology , Pain/pathology , Spinal Cord/pathology , Animals , Edema/microbiology , Hyperalgesia/microbiology , Leishmania , Male , Mice , Mice, Inbred BALB C , Neuroglia/microbiology , Pain/microbiology , Spinal Cord/microbiology
5.
Inflammopharmacology ; 27(6): 1229-1242, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30612217

ABSTRACT

BACKGROUND: Naringenin is a biologically active analgesic, anti-inflammatory, and antioxidant flavonoid. Naringenin targets in inflammation-induced articular pain remain poorly explored. METHODS: The present study investigated the cellular and molecular mechanisms involved in the analgesic/anti-inflammatory effects of naringenin in zymosan-induced arthritis. Mice were pre-treated orally with naringenin (16.7-150 mg/kg), followed by intra-articular injection of zymosan. Articular mechanical hyperalgesia and oedema, leucocyte recruitment to synovial cavity, histopathology, expression/production of pro- and anti-inflammatory mediators and NFκB activation, inflammasome component expression, and oxidative stress were evaluated. RESULTS: Naringenin inhibited articular pain and oedema in a dose-dependent manner. The dose of 50 mg/kg inhibited leucocyte recruitment, histopathological alterations, NFκB activation, and NFκB-dependent pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-33), and preproET-1 mRNA expression, but increased anti-inflammatory IL-10. Naringenin also inhibited inflammasome upregulation (reduced Nlrp3, ASC, caspase-1, and pro-IL-1ß mRNA expression) and oxidative stress (reduced gp91phox mRNA expression and superoxide anion production, increased GSH levels, induced Nrf2 protein in CD45+ hematopoietic recruited cells, and induced Nrf2 and HO-1 mRNA expression). CONCLUSIONS: Naringenin presents analgesic and anti-inflammatory effects in zymosan-induced arthritis by targeting its main physiopathological mechanisms. These data highlight this flavonoid as an interesting therapeutic compound to treat joint inflammation, deserving additional pre-clinical and clinical studies.


Subject(s)
Arthritis/drug therapy , Flavanones/therapeutic use , Leukocyte Common Antigens/analysis , NF-E2-Related Factor 2/physiology , Zymosan/pharmacology , Animals , Cytokines/biosynthesis , Disease Models, Animal , Dose-Response Relationship, Drug , Flavanones/pharmacology , Hematopoietic Stem Cells/metabolism , Inflammasomes/drug effects , Knee Joint/pathology , Male , Mice , NF-E2-Related Factor 2/genetics , NF-kappa B/physiology , Oxidative Stress/drug effects , Signal Transduction
6.
Invest Ophthalmol Vis Sci ; 58(13): 5764-5776, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29117277

ABSTRACT

Purpose: To investigate the effect of naringenin eye drops in corneal neovascularization induced by alkali (1 N NaOH) burn in mice. Methods: Corneal neovascularization in the right eye of male Swiss mice was induced by alkali. Treatment with naringenin eye drops (0.08-80 µg; 8 µL of 0.01-10 g/L solution) or vehicle (saline) started 2 days before corneal neovascularization was induced and was performed twice a day. Mice were treated up until the time animals were euthanized and cornea tissue was collected for testing, which was 2, 4, and 6 hours after alkali stimulus for cytokine and antioxidant capacity measurements, and 3 and/or 7 days after alkali stimulus for the assessment of corneal epithelial thickness and neovascularization, neutrophil, and macrophage recruitment, and vascular endothelial growth factor (Vegf), platelet-derived growth factor (Pdgf), matrix metalloproteinase-14 (Mmp14), and pigment epithelium-derived factor (Pedf) mRNA expression. Results: Naringenin eye drops inhibited alkali burn-induced neutrophil (myeloperoxidase activity and recruitment of Lysm-GFP+ cells) and macrophage (N-acetyl-ß-D glucosaminidase activity) recruitment into the eye, decrease in epithelial thickness, and neovascularization in the cornea. Further, naringenin inhibited alkali-induced cytokine (IL-1ß and IL-6) production, Vegf, Pdgf, and Mmp14 mRNA expression, and the reduction of ferric reducing antioxidant power and Azinobis-(3-Ethylbenzothiazoline 6-Sulfonic acid) radical scavenging capacity as well as increased the reduced glutathione and protein-bound sulfhydryl groups levels. Conclusions: Collectively, these results indicate that naringenin eye drops are protective in alkali-induced corneal burn by inhibiting leukocyte recruitment, the proangiogenic factor expression, inflammatory cytokine production, and loss of antioxidant defenses.


Subject(s)
Antioxidants/metabolism , Corneal Neovascularization/drug therapy , Cytokines/metabolism , Epithelium, Corneal/metabolism , Flavanones/administration & dosage , Alkalies/toxicity , Animals , Burns, Chemical/complications , Corneal Neovascularization/metabolism , Corneal Neovascularization/pathology , Disease Models, Animal , Epithelium, Corneal/drug effects , Epithelium, Corneal/pathology , Estrogen Antagonists/administration & dosage , Eye Burns/chemically induced , Male , Mice , Microscopy, Confocal , Ophthalmic Solutions
7.
Inflammopharmacology ; 2017 May 15.
Article in English | MEDLINE | ID: mdl-28508104

ABSTRACT

We investigated the anti-inflammatory and analgesic effects of quercetin in monosodium urate crystals (MSU)-induced gout arthritis, and the sensitivity of quercetin effects to naloxone, an opioid receptor antagonist. Mice were treated with quercetin, and mechanical hyperalgesia was assessed at 1-24 h after MSU injection. In vivo, leukocyte recruitment, cytokine levels, oxidative stress, NFκB activation, and gp91phox and inflammasome components (NLRP3, ASC, Pro-caspase-1, and Pro-IL-1ß) mRNA expression by qPCR were determined in the knee joints at 24 h after MSU injection. Inflammasome activation was determined, in vitro, in lipopolysaccharide-primed macrophages challenged with MSU. Quercetin inhibited MSU-induced mechanical hyperalgesia, leukocyte recruitment, TNFα and IL-1ß production, superoxide anion production, inflammasome activation, decrease of antioxidants levels, NFκB activation, and inflammasome components mRNA expression. Naloxone pre-treatment prevented all the inhibitory effects of quercetin over MSU-induced gout arthritis. These results demonstrate that quercetin exerts analgesic and anti-inflammatory effect in the MSU-induced arthritis in a naloxone-sensitive manner.

8.
Free Radic Biol Med ; 108: 487-499, 2017 07.
Article in English | MEDLINE | ID: mdl-28419865

ABSTRACT

Septic arthritis is a severe and rapidly debilitating disease associated with severe joint pain, inflammation and oxidative stress. Nitroxyl (HNO) has become a nitrogen oxide of significant interest due to its pharmacological endpoints that are potentially favorable for treating varied diseases. However, whether HNO also serves as a treatment to septic arthritis is currently unknown. The aim of this study was to investigate the effect of the HNO donor, Angeli's salt (AS), in the outcome of chronic Staphylococcus aureus (S. aureus)-induced septic arthritis in mice. Daily treatment with AS inhibited mechanical hyperalgesia and inflammation (edema, leukocyte migration, cytokines release and NF-κB activation, and oxidative stress) resulting in reduced disease severity (clinical course, histopathological changes, proteoglycan levels in the joints, and osteoclastogenesis). In addition, AS decreased the number of S. aureus colony forming unities in synovial tissue, enhanced the bactericidal effect of macrophages and inhibited the worsening of systemic inflammatory response (leukocyte counts in the lung and systemic proinflammatory cytokine concentration). Our results suggest for the first time the therapeutic potential of AS in a model of septic arthritis by mechanisms involving microbicidal effects, anti-inflammatory actions and reduction of disease severity.


Subject(s)
Antioxidants/therapeutic use , Arthritis, Infectious/drug therapy , Inflammation/drug therapy , Lung/immunology , Nitrites/therapeutic use , Staphylococcal Infections/drug therapy , Staphylococcus aureus/immunology , Animals , Hyperalgesia , Lung/drug effects , Lung/microbiology , Male , Mice , NF-kappa B/metabolism , Nitrogen Oxides/metabolism , Oxidative Stress , Signal Transduction
9.
Int J Nanomedicine ; 12: 1019-1031, 2017.
Article in English | MEDLINE | ID: mdl-28223796

ABSTRACT

Multiwalled carbon nanotubes (MWCNTs) are nanomaterials composed of multiple layers of graphene cylinders with unique properties that make them valuable for a number of industries. However, rising global production has led to concerns regarding potential occupational exposures to them as raw materials during handling. This is especially true for long MWCNT fibers, whose aspect ratio has been posited to initiate pathology similar to that of asbestos. Matrix metalloproteinases (MMPs) are a class of extracellular endopeptidases that control various processes related to tissue repair, inflammation, and more. Stromelysin-2 (MMP-10) has roles in modulating macrophage activation and function, and hence, we used an MMP-10 null (Mmp10-/-) mouse model to assess its role in controlling lung responses to inhaled long MWCNTs. Oropharyngeal aspiration of long MWCNTs (80 µg/mouse) by wild-type mice induced expression of Mmp10 mRNA, which was accompanied by a robust inflammatory response characterized by elevated expression of Tnfa, Il6, and Il1b. In Mmp10-/- mice, we found that absence of MMP-10 led to impaired pulmonary clearance of MWCNTs and reduced macrophage cell survival. Exposure of wild-type bone marrow-derived macrophages (BMDMs) and alveolar macrophages to MWCNTs caused a rapid, dose-dependent upregulation of Mmp10 mRNA expression, which was accompanied by expression of pro-inflammatory products (Il6 and Il1b). These products were further enhanced in Mmp10-/- macrophages, resulting in increased caspase-3-dependent cell death compared with wild-type cells. These findings indicate that MMP-10 facilitates the clearance of MWCNTs and moderates the pro-inflammatory response of exposed alveolar and infiltrated macrophages.


Subject(s)
Inflammation/enzymology , Lung/enzymology , Lung/pathology , Matrix Metalloproteinase 10/metabolism , Nanotubes, Carbon/toxicity , Animals , Bronchoalveolar Lavage , Caspase 3/metabolism , Cell Death/drug effects , Cytoprotection/drug effects , Endocytosis/drug effects , Inflammation Mediators/metabolism , Lung/drug effects , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Mice, Inbred C57BL , Pneumonia/pathology
10.
Sci Rep ; 7: 41539, 2017 02 02.
Article in English | MEDLINE | ID: mdl-28148962

ABSTRACT

Interleukin-1ß (IL-1ß) is a highly inflammatory cytokine that significantly contributes to both acute and chronic inflammatory diseases. The secretion of IL-1ß requires a unique protease, caspase-1, which is activated by various protein platforms called inflammasomes. Data suggests a key role for mitochondrial reactive oxygen species for inflammasome activation. Flavonoids constitute a group of naturally occurring polyphenolic molecules with many biological activities, including antioxidant effects. In this study, we investigated the effect of three flavonoids, quercetin (QUC), naringenin, and silymarim on inflammasome activation. We found that QUC inhibits IL-1ß secretion by both the NLRP3 and AIM2 inflammasome in a dose dependent manner, but not the NLRC4 inflammasome. QUC inhibition of the inflammasome was still observed in Atg16l1 knockout macrophages, indicating that QUC's effect was autophagy independent. Since QUC inhibited both NLRP3 and AIM2 inflammasomes but not NLRC4, we assessed ASC speck formation. QUC reduced ASC speck formation and ASC oligomerization compared with controls. Additionally, QUC inhibited IL-1ß in Cryopyrin-Associated Periodic Syndromes (CAPS) macrophages, where NLRP3 inflammasome is constitutively activated. In conclusion, QUC inhibits both the NLRP3 and AIM2 inflammasome by preventing ASC oligomerization and may be a potential therapeutic candidate for Kawasaki disease vasculitis and other IL-1 mediated inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , CARD Signaling Adaptor Proteins/metabolism , Inflammasomes/antagonists & inhibitors , Interleukin-1beta/metabolism , Protein Multimerization/drug effects , Quercetin/pharmacology , Vasculitis/etiology , Vasculitis/metabolism , Animals , Aortic Aneurysm/pathology , Apoptosis Regulatory Proteins/metabolism , Autophagy , CARD Signaling Adaptor Proteins/chemistry , Calcium-Binding Proteins/metabolism , Coronary Vessels/pathology , DNA-Binding Proteins/antagonists & inhibitors , Disease Models, Animal , Mice , Mucocutaneous Lymph Node Syndrome/etiology , Mucocutaneous Lymph Node Syndrome/metabolism , Mucocutaneous Lymph Node Syndrome/pathology , Mucocutaneous Lymph Node Syndrome/prevention & control , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Vasculitis/pathology , Vasculitis/prevention & control
11.
Scientifica (Cairo) ; 2016: 8656397, 2016.
Article in English | MEDLINE | ID: mdl-27293981

ABSTRACT

Tephrosia toxicaria, which is currently known as Tephrosia sinapou (Buc'hoz) A. Chev. (Fabaceae), is a source of compounds such as flavonoids. T. sinapou has been used in Amazonian countries traditional medicine to alleviate pain and inflammation. The purpose of this study was to evaluate the analgesic effects of T. sinapou ethyl acetate extract in overt pain-like behavior models in mice by using writhing response and flinching/licking tests. We demonstrated in this study that T. sinapou extract inhibited, in a dose (1-100 mg/kg) dependent manner, acetic acid- and phenyl-p-benzoquinone- (PBQ-) induced writhing response. Furthermore, it was active via intraperitoneal, subcutaneous, and peroral routes of administration. T. sinapou extract also inhibited formalin- and complete Freund's adjuvant- (CFA-) induced flinching/licking at 100 mg/kg dose. In conclusion, these findings demonstrate that T. sinapou ethyl acetate extract reduces inflammatory pain in the acetic acid, PBQ, formalin, and CFA models of overt pain-like behavior. Therefore, the potential of analgesic activity of T. sinapou indicates that it deserves further investigation.

12.
Inflammopharmacology ; 21(2): 187-97, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23054333

ABSTRACT

Anethole has been reported to have antioxidant, antibacterial, antifungal, antiinflammatory, and anesthetic properties. In the present study, we evaluated the effects of anethole in two pain models of inflammatory origin: acute inflammation induced by carrageenan and persistent inflammation induced by Complete Freund's adjuvant. We evaluated the effects of anethole (125, 250, and 500 mg/kg) on the development of paw oedema and mechanical hypernociception. The liver was collected for histological analysis. Paw skin was collected to determine the levels of the cytokines tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-17 (IL-17), and myeloperoxidase activity. Blood was collected to assess alanine transaminase (ALT) and aspartate transaminase (AST). The chemical composition of star anise oil was determined by gas chromatography/mass spectrometry (GC/MS), showing a presence of anethole of 98.1%. Oral pretreatment with anethole in mice inhibited paw oedema, mechanical pernociception, myelopewroxidase activity, TNF-α, IL-1ß and IL-17 levels in acute and persistent inflammation models. Additionally, anethole treatment did not alter prostaglandin E2-induced mechanical hypernociception. Possible side effects were also examined. Seven-day anethole treatment did not alter plasma AST and ALT levels, and the histological profile of liver tissue was normal. The present study provides evidence of the antiinflammatory and analgesic activities of anethole in acute and persistent inflammation models.


Subject(s)
Analgesics/pharmacology , Anisoles/pharmacology , Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Pain/drug therapy , Alanine Transaminase/metabolism , Allylbenzene Derivatives , Analgesics/adverse effects , Animals , Anisoles/adverse effects , Anti-Inflammatory Agents/adverse effects , Aspartate Aminotransferases/metabolism , Edema/chemically induced , Edema/drug therapy , Edema/metabolism , Illicium/chemistry , Inflammation/metabolism , Interleukin-17/metabolism , Interleukin-1beta/metabolism , Liver/metabolism , Male , Mice , Neutrophils/drug effects , Neutrophils/metabolism , Nociception/drug effects , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Pain/metabolism , Peroxidase/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...