Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Br J Haematol ; 204(4): 1507-1514, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38323352

ABSTRACT

The occurrence and severity of osteonecrosis in sickle cell anaemia (SCA) vary due to risk factors, including genetic modifiers. Bone morphogenetic proteins (BMPs), particularly BMP6, and the vitamin D receptor (VDR) play key roles in cartilage and bone metabolism, making them potential contributors to orthopaedic outcomes in SCA. Here, we evaluated the association of polymorphisms in BMP6 (rs3812163, rs270393 and rs449853) and VDR (FokI rs2228570 and Cdx2 rs11568820) genes with osteonecrosis risk in a Brazilian SCA cohort. A total of 177 unrelated SCA patients were selected. The AA genotype of BMP6 rs3812163 was independently associated with a lower osteonecrosis risk (p = 0.015; odds ratio (OR): 0.38; 95% confidence interval (CI): 0.18-0.83) and with the long-term cumulative incidence of osteonecrosis (p = 0.029; hazard ratio: 0.56, 95% CI: 0.34-0.94). The VDR rs2228570 TT genotype was independently associated with a lower osteonecrosis risk (p = 0.039; OR: 0.14; 95% CI: 0.02-0.90). In summary, our results provide evidence that BMP6 rs3812163 and the VDR rs2228570 might be implicated in osteonecrosis pathophysiology in SCA and might help identify individuals at high risk.


Subject(s)
Anemia, Sickle Cell , Osteonecrosis , Humans , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Risk Factors , Osteonecrosis/genetics , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/genetics , Genotype , Case-Control Studies , Bone Morphogenetic Protein 6/genetics , Receptors, Calcitriol/genetics
2.
J Stroke Cerebrovasc Dis ; 33(1): 107474, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38006767

ABSTRACT

OBJECTIVES: Stroke is a devastating clinical outcome that significantly contributes to the morbidity and mortality of sickle cell anemia (SCA) patients. Despite its advantages in predicting stroke risk, transcranial Doppler screening has limitations that restrict its applicability, highlighting the need for emerging prognostic tools. Thrombospondin-1 plays a crucial role in endothelial injury, platelet adhesion, and nitric oxide metabolism and may be implicated in stroke pathophysiology. Here, we aimed to evaluate the association of THBS1 genetic variations with the occurrence of stroke in SCA patients MATERIALS AND METHODS: By real-time PCR, 512 SCA patients were fully genotyped for THBS1 A-296G (rs1478605) polymorphism RESULTS: THBS1 GG genotype was associated with a lower risk for stroke occurrence [odds ratio (OR): 0.30; 95% confidence interval (CI): 0.11-0.78; P = 0.011], although these findings were not consistent with multivariate logistic regression analysis (OR: 0.73, 95% CI: 0.12 - 4.37; P = 0.736). In agreement, the cumulative incidence of stroke for patients with AG/AA genotypes was higher when compared to the GG genotype (P = 0.018). However, the association was not maintained in the multivariate proportional hazards model (hazard ratio: 0.67, 95% CI: 0.12-3.61; P = 0.643) CONCLUSIONS: In summary, the present study shows that the THBS1 A-296G (rs1478605) polymorphism may be a potential modifier for stroke in SCA.


Subject(s)
Anemia, Sickle Cell , Stroke , Humans , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/diagnosis , Anemia, Sickle Cell/epidemiology , Brazil/epidemiology , Genotype , Polymorphism, Genetic , Stroke/diagnosis , Stroke/epidemiology , Stroke/genetics
3.
Mol Biol Rep ; 49(3): 2433-2442, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35000064

ABSTRACT

Sickle cell disease (SCD) is a well-studied monogenetic disease with an established chronic inflammatory component. The paradigm shift towards inflammation has made the pathophysiology of SCD even more complex. Studies have shown that an imbalance between the pro-inflammatory and anti-inflammatory cytokines in SCD exists; however, the reports are skewed toward the pro-inflammatory mediators. We enumerate recent in vitro and in vivo studies on anti-inflammatory cytokines in SCD patients, and discuss the biology of anti-inflammatory cytokines including the already reported IL-2, TGF-ß, and IL-10 as well as the recently discovered IL-27, IL-35 and IL-37. This review will improve the understanding of the pathophysiology of SCD and aid in the search of new therapeutic options for patients with SCD.


Subject(s)
Anemia, Sickle Cell , Cytokines , Anemia, Sickle Cell/metabolism , Anti-Inflammatory Agents/therapeutic use , Cytokines/metabolism , Humans , Inflammation/drug therapy , Inflammation Mediators
5.
Ann Hematol ; 101(2): 281-287, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34651249

ABSTRACT

One of the physiologic mechanisms responsible to maintain asymmetric phospholipid distribution (in particular phosphatidylserine, PS) in human erythrocyte membranes is orchestrated by the balance between enzymes responsible for active transport of PS from the outer to the inner leaflet (ATP11C) and those whose counteracts these activities (PLSCR1). Using quantitative real-time polymerase chain reaction and standard flow cytometry procedures, we hypothesized that the aberrant expression of either or both ATP11C and PLSCR1 transcripts may disrupt the PS internalization/externalization process and become clinically relevant for patients with sickle cell anemia (SCA). Overall, neither ATP11C/PLSCR1 ratio or ATP11C and PLSCR1 (if analyzed separately) had impact on risk to present acute or chronic organ damage in 178 patients with SCA. By collecting a new set of samples from SCA patients during a vaso-occlusive crisis (VOC, crisis state, 13 patients) and comparing with new samples of patients in steady state (15 patients), we noticed that patients in steady state exhibited mean values of ATP11C/PLSCR1 ratio significantly higher (mean value: 18.2, range, 0.3-53) than those who were in crisis (mean value: 3.7, range, 0.5-9) (P = 0.013). Most importantly, there was a strong inverse correlation between PS exposure and ATP11C/PLSCR1 ratio in sickle erythrocytes (Pearson correlation coefficient, r: - 0.78). Based on these findings, it is conceivable that the ATP11C/PLSCR1 ratio may switch from high to low during a VOC, although the underlying reasons require further investigations.


Subject(s)
Adenosine Triphosphatases/genetics , Anemia, Sickle Cell/genetics , Membrane Transport Proteins/genetics , Phospholipid Transfer Proteins/genetics , RNA, Messenger/genetics , Adolescent , Adult , Aged , Child , Female , Humans , Male , Middle Aged , Transcriptome , Young Adult
6.
Hematol., Transfus. Cell Ther. (Impr.) ; 43(3): 243-248, July-Sept. 2021. tab, graf
Article in English | LILACS | ID: biblio-1346265

ABSTRACT

Abstract Introduction: Sickle cell anemia (SCA) is a Mendelian disorder with a heterogeneous clinical course. The reasons for this phenotypic diversity are not entirely established, but it is known that high fetal hemoglobin levels lead to a milder course of the disease. Additionally, genetic variants in the intergenic region HBS1L-MYB promote high levels of fetal hemoglobin into adulthood. Objective: In the present study, we investigated the HMIP1 C-839A (rs9376092) polymorphism, located at the HBS1L-MYB intergenic region block 1, in SCA patients. Method: We analyzed 299 SCA patients followed in two reference centers in Brazil. The HMIP1 C-839A (rs9376092) genotypes were determined by allele specific polymerase chain reactions. Clinical and laboratory data were obtained from patient interviews and medical records. Results: The median fetal hemoglobin levels were higher in patients with the HMIP1 C-839A (rs9376092) AA genotype (CC = 6.4%, CA = 5.6% and AA = 8.6%), but this difference did not reach significance (p = 0.194). No association between HMIP1 C-839A (rs9376092) genotypes and other clinical and laboratorial features was detected (p > 0.05). Conclusion: In summary, our data could not support the previously related association between the HMIP1 C-893A (rs9376092) polymorphism and differential fetal hemoglobin levels.


Subject(s)
Humans , Male , Female , Adolescent , Adult , Middle Aged , Fetal Hemoglobin , Anemia, Sickle Cell , Polymorphism, Genetic
7.
Ann Hematol ; 100(8): 1921-1927, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34125262

ABSTRACT

The clinical and phenotypic heterogeneity of patients with sickle cell anemia (SCA) is influenced by environmental and genetic factors. Several genetic modifiers, such as the KLOTHO (KL) gene, have been associated with SCA clinical outcomes. The KL gene and its encoded proteins are implicated in important biological pathways, which affect the disease's pathophysiology, such as expression of adhesion molecules VCAM-1 and ICAM-1, oxidative stress, and nitric oxide biology. Here, we evaluated the clinical relevance of two polymorphisms found on the KL gene (rs685417 and rs211239) in 588 unrelated patients with SCA. Genotyping analyses were performed using the TaqMan system. The KL rs211239 was associated with increased number of vaso-occlusive crisis (VOCs) per year (P = 0.001), while KL rs685417 was associated with increased frequency of stroke (P = 0.034), priapism (P = 0.011), number of complications (P = 0.019), and with a lower incidence of priapism (P = 0.036). Additionally, the associations with VOCs, stroke, and priapism remained consistent in multivariate analyses (P < 0.05). Our data highlight the clinical importance of KL in SCA.


Subject(s)
Anemia, Sickle Cell/complications , Anemia, Sickle Cell/genetics , Glucuronidase/genetics , Polymorphism, Single Nucleotide , Adolescent , Adult , Aged , Anemia, Sickle Cell/diagnosis , Child , Female , Humans , Klotho Proteins , Male , Middle Aged , Prognosis , Stroke/etiology , Stroke/genetics , Young Adult
8.
Ann Hematol ; 100(4): 903-911, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33523291

ABSTRACT

Hyperbilirubinemia in patients with sickle cell anemia (SCA) as a result of enhanced erythrocyte destruction, lead to cholelithiasis development in a subset of patients. Evidence suggests that hyperbilirubinemia may be related to genetic variations, such as the UGT1A1 gene promoter polymorphism, which causes Gilbert syndrome (GS). Here, we aimed to determine the frequencies of UGT1A1 promoter alleles, alpha thalassemia, and ßS haplotypes and analyze their association with cholelithiasis and bilirubin levels. The UGT1A1 alleles, -3.7 kb alpha thalassemia deletion and ßS haplotypes were determined using DNA sequencing and PCR-based assays in 913 patients with SCA. The mean of total and unconjugated bilirubin and the frequency of cholelithiasis in GS patients were higher when compared to those without this condition, regardless of age (P < 0.05). Cumulative analysis demonstrated an early age-at-onset for cholelithiasis in GS genotypes (P < 0.05). Low fetal hemoglobin (HbF) levels and normal alpha thalassemia genotype were related to cholelithiasis development (P > 0.05). However, not cholelithiasis but total and unconjugated bilirubin levels were associated with ßS haplotype. These findings confirm in a large cohort that the UGT1A1 polymorphism influences cholelithiasis and hyperbilirubinemia in SCA. HbF and alpha thalassemia also appear as modulators for cholelithiasis risk.


Subject(s)
Anemia, Sickle Cell/blood , Bilirubin/blood , Cholelithiasis/etiology , Gilbert Disease/blood , Glucuronosyltransferase/physiology , Promoter Regions, Genetic/genetics , alpha-Thalassemia/blood , Adolescent , Adult , Aged , Alleles , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/enzymology , Anemia, Sickle Cell/genetics , Child , Child, Preschool , Cholelithiasis/blood , Cholelithiasis/genetics , Female , Fetal Hemoglobin/analysis , Genotype , Gilbert Disease/enzymology , Gilbert Disease/genetics , Glucuronosyltransferase/genetics , Haplotypes/genetics , Hemolysis , Humans , Hyperbilirubinemia/enzymology , Hyperbilirubinemia/etiology , Hyperbilirubinemia/genetics , Male , Middle Aged , Young Adult , alpha-Thalassemia/complications , alpha-Thalassemia/enzymology , alpha-Thalassemia/genetics
9.
Hematol Transfus Cell Ther ; 43(3): 243-248, 2021.
Article in English | MEDLINE | ID: mdl-32665180

ABSTRACT

INTRODUCTION: Sickle cell anemia (SCA) is a Mendelian disorder with a heterogeneous clinical course. The reasons for this phenotypic diversity are not entirely established, but it is known that high fetal hemoglobin levels lead to a milder course of the disease. Additionally, genetic variants in the intergenic region HBS1L-MYB promote high levels of fetal hemoglobin into adulthood. OBJECTIVE: In the present study, we investigated the HMIP1 C-839A (rs9376092) polymorphism, located at the HBS1L-MYB intergenic region block 1, in SCA patients. METHOD: We analyzed 299 SCA patients followed in two reference centers in Brazil. The HMIP1 C-839A (rs9376092) genotypes were determined by allele specific polymerase chain reactions. Clinical and laboratory data were obtained from patient interviews and medical records. RESULTS: The median fetal hemoglobin levels were higher in patients with the HMIP1 C-839A (rs9376092) AA genotype (CC=6.4%, CA=5.6% and AA=8.6%), but this difference did not reach significance (p=0.194). No association between HMIP1 C-839A (rs9376092) genotypes and other clinical and laboratorial features was detected (p>0.05). CONCLUSION: In summary, our data could not support the previously related association between the HMIP1 C-893A (rs9376092) polymorphism and differential fetal hemoglobin levels.

10.
J Neurol Sci ; 414: 116839, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32344219

ABSTRACT

Overt stroke in adults with sickle cell anemia (SCA) continues to be a major cause of morbidity and mortality, while no evidence-based strategy for prevention has been reached so far. Although transcranial Doppler ultrasonography represents the most important tool for identifying young patients with SCA at risk of primary stroke, strategies for stroke prediction in adulthood remain challenging. Emerging data suggest that oxidative stress may exert a pivotal role in the pathogenesis of ischemic brain injury. Combining these pieces of evidences with the well-known genetic contribution to the development of stroke in SCA, we hypothesized that genetic variants related to the biology of oxidative stress could be used to identify adult patients at higher risk of stroke. Overall, 499 unrelated patients with SCA aged >18 years were genotyped for SOD2 Val16Ala (rs4880), GPX3 T-568C (rs8177404), GPX3 T-518C (rs8177406), GPX3 T-65C (rs8177412), and CAT01 C-262 T (rs1001179) polymorphisms, along with α-thalassemia status and ß-globin gene haplotypes. Of these, only the SOD2 Val16Ala polymorphism was associated with stroke. SOD2 Val16Ala polymorphism was independently associated with risk of stroke (odds ratio: 1.98; 95% confidence interval [CI]: 1.18-3.32; P = .009) and with the long-term cumulative incidence of stroke (hazard ratio: 2.24, 95% CI: 1.3-3.9; P = .004). In summary, we provide evidence that oxidative stress-related genetic variants, in particular, the SOD2 Val16Ala polymorphism, may represent a simple and inexpensive alternative for identifying patients at risk of stroke.


Subject(s)
Anemia, Sickle Cell , Stroke , alpha-Thalassemia , Adult , Aged , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/genetics , Humans , Oxidative Stress/genetics , Stroke/diagnostic imaging , Stroke/epidemiology , Stroke/genetics , Ultrasonography, Doppler, Transcranial
11.
Ann Hematol ; 99(5): 947-953, 2020 May.
Article in English | MEDLINE | ID: mdl-32140892

ABSTRACT

Sickle cell anemia (SCA) pathophysiology is characterized by the activation of sickle red blood cells, reticulocytes, leukocytes, platelets, and endothelial cells, and with the expression of several inflammatory molecules. Therefore, it is conceivable that variations in levels of proinflammatory cytokines may act as a signaling of differential clinical course in SCA. Here, we evaluated the clinical impact of proinflammatory cytokines interleukin 1-ß (IL-1ß), interleukin 6 (IL-6), and interleukin 8 (IL-8) in 79 patients with SCA, followed in a single reference center from northeastern Brazil. The main clinical/laboratory data were obtained from patient interview and medical records. The proinflammatory markers IL-1ß, IL-6, and IL-8 were evaluated by using commercially available enzyme-linked immunosorbent assay kits. According to levels of the proinflammatory markers, we observed that patients who had a higher frequency of VOC per year (P = 0.0236), acute chest syndrome (P = 0.01), leg ulcers (P = 0.0001), osteonecrosis (P = 0.0006), stroke (P = 0.0486), and priapism (P = 0.0347) had higher IL-6 levels compared with patients without these clinical complications. Furthermore, increased levels of IL-8 were found in patients who presented leg ulcers (P = 0.0184). No significant difference was found for IL-1ß levels (P > 0.05). In summary, the present study emphasizes the role of inflammation in SCA pathophysiology, reveals an association of IL-8 levels and leg ulcer occurrence, and indicates that IL-6 levels can be used as a useful predictor for poor outcomes in SCA.


Subject(s)
Anemia, Sickle Cell/blood , Interleukin-6/blood , Interleukin-8/blood , Leg Ulcer/blood , Adult , Anemia, Sickle Cell/epidemiology , Brazil , Enzyme-Linked Immunosorbent Assay , Female , Follow-Up Studies , Humans , Interleukin-1beta/blood , Leg Ulcer/epidemiology , Male , Middle Aged
13.
Sci Rep ; 9(1): 10896, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31350437

ABSTRACT

Genetic analysis of admixed populations raises special concerns with regard to study design and data processing, particularly to avoid population stratification biases. The point mutation responsible for sickle cell anaemia codes for a variant hemoglobin, sickle hemoglobin or HbS, whose presence drives the pathophysiology of disease. Here we propose to explore ancestry and population structure in a genome-wide study with particular emphasis on chromosome 11 in two SCA admixed cohorts obtained from urban populations of Brazil (Pernambuco and São Paulo) and the United States (Pennsylvania). Ancestry inference showed different proportions of European, African and American backgrounds in the composition of our samples. Brazilians were more admixed, had a lower African background (43% vs. 78% on the genomic level and 44% vs. 76% on chromosome 11) and presented a signature of positive selection and Iberian introgression in the HbS region, driving a high differentiation of this locus between the two cohorts. The genetic structures of the SCA cohorts from Brazil and US differ considerably on the genome-wide, chromosome 11 and HbS mutation locus levels.


Subject(s)
Anemia, Sickle Cell/genetics , Chromosomes, Human, Pair 11/genetics , Genetics, Population/methods , Genotype , Hemoglobin, Sickle/genetics , Population Groups , Racial Groups/genetics , Brazil , Cohort Studies , Gene Frequency , Genome , Genome-Wide Association Study , Haplotypes , Humans , United States
14.
PLoS One ; 13(12): e0208316, 2018.
Article in English | MEDLINE | ID: mdl-30521599

ABSTRACT

ß-thalassemia is a worldwide distributed monogenic red cell disorder, characterized by an absent or reduced beta globin chain synthesis. The unbalance of alpha-gamma chain and the presence of pathological free iron promote severe oxidative damage, playing crucial a role in erythrocyte hemolysis, exacerbating ineffective erythropoiesis and decreasing the lifespan of red blood cells (RBC). Catalase, glutathione peroxidase and peroxiredoxins act together to protect RBCs from hydrogen peroxide insult. Among them, peroxiredoxins stand out for their overall abundance and reactivity. In RBCs, Prdx2 is the third most abundant protein, although Prdxs 1 and 6 isoforms are also found in lower amounts. Despite the importance of these enzymes, Prdx1 and Prdx2 may have their peroxidase activity inactivated by hyperoxidation at high hydroperoxide concentrations, which also promotes the molecular chaperone activity of these proteins. Some studies have demonstrated the importance of Prdx1 and Prdx2 for the development and maintenance of erythrocytes in hemolytic anemia. Now, we performed a global analysis comparatively evaluating the expression profile of several antioxidant enzymes and their physiological reducing agents in patients with beta thalassemia intermedia (BTI) and healthy individuals. Furthermore, increased levels of ROS were observed not only in RBC, but also in neutrophils and mononuclear cells of BTI patients. The level of transcripts and the protein content of Prx1 were increased in reticulocyte and RBCs of BTI patients and the protein content was also found to be higher when compared to beta thalassemia major (BTM), suggesting that this peroxidase could cooperate with Prx2 in the removal of H2O2. Furthermore, Prdx2 production is highly increased in RBCs of BTM patients that present high amounts of hyperoxidized species. A significant increase in the content of Trx1, Srx1 and Sod1 in RBCs of BTI patients suggested protective roles for these enzymes in BTI patients. Finally, the upregulation of Nrf2 and Keap1 transcription factors found in BTI patients may be involved in the regulation of the antioxidant enzymes analyzed in this work.


Subject(s)
Erythroid Cells/metabolism , Peroxiredoxins/metabolism , beta-Thalassemia/metabolism , beta-Thalassemia/pathology , Adolescent , Adult , Blotting, Western , Child , Child, Preschool , Erythrocytes/cytology , Erythrocytes/metabolism , Female , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Neutrophils/cytology , Neutrophils/metabolism , Oxidation-Reduction , Peroxiredoxins/genetics , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Young Adult
16.
Br J Haematol ; 173(3): 456-60, 2016 05.
Article in English | MEDLINE | ID: mdl-26888013

ABSTRACT

The presence of high levels of fetal haemoglobin (HbF) provides well-validated clinical benefits to patients with sickle cell anaemia (SCA). Nevertheless it has been difficult to show clear direct effects of the known genetic HbF modifiers, such as the enhancer polymorphisms for haematopoietic transcription factors BCL11A and MYB, on SCA severity. Investigating SCA patients from Brazil, with a high degree of European genetic admixture, we have detected strong effects of these variants on HbF levels. Critically, we have shown, for the first time, that the presence of such HbF-promoting variants leads to a reduced rate of SCA complications, especially stroke.


Subject(s)
Anemia, Sickle Cell/complications , Carrier Proteins/genetics , Enhancer Elements, Genetic , Fetal Hemoglobin/genetics , Nuclear Proteins/genetics , RNA-Binding Proteins/genetics , Adolescent , Adult , Aged , Alleles , Brazil , Child , Female , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Repressor Proteins , Young Adult
18.
Ann Hematol ; 93(7): 1123-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24493127

ABSTRACT

Stroke is a catastrophic complication of sickle cell anaemia (SCA) and is one of the leading causes of death in both adults and children with SCA. Evidence suggests that some genetic polymorphisms could be related to stroke development, but their association remains controversial. Here, we performed genotyping of five published single nucleotide polymorphisms, the α-thalassemia genotype, the G6PD A (-) variant deficiency, and the ß(S) haplotype in a large series of SCA patients with well-defined stroke phenotypes. Of 261 unrelated SCA patients included in the study, 67 (9.5 %) presented a documented, primary stroke event. Markers of haemolysis (red blood cell (RBC) counts, p = 0.023; reticulocyte counts, p = 0.003; haemoglobin (Hb) levels, p < 0.001; indirect bilirubin levels, p = 0.006; lactate dehydrogenase (LDH) levels, p = 0.001) were associated with stroke susceptibility. Genetically, only the ß(S) haplotype (odds ratio (OR) 2.9, 95 % confidence interval (CI) 1.56 to 4.31; p = 0.003) and the α(3.7kb)-thalassemia genotype (OR 0.31, 95 % CI 0.11 to 0. 83; p = 0.02) were associated with increased and decreased stroke risk, respectively. In multivariate analysis, the ß(S) haplotype was independently associated with stroke development (OR 2.26, 95 % CI 1.16 to 4.4; p = 0.016). Our findings suggest that only the ß(S) haplotypes and the α(3.7kb)-thalassemia genotype modulate the prevalence of stroke in our SCA population. Genetic heterogeneity among different populations may account for the irreproducibility amongst different studies.


Subject(s)
Anemia, Sickle Cell/genetics , Haplotypes/genetics , Population Surveillance , Stroke/genetics , alpha-Thalassemia/genetics , beta-Thalassemia/genetics , Adolescent , Adult , Anemia, Sickle Cell/diagnosis , Anemia, Sickle Cell/epidemiology , Brazil/epidemiology , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Male , Polymorphism, Single Nucleotide/genetics , Population Surveillance/methods , Stroke/diagnosis , Stroke/epidemiology , Young Adult , alpha-Thalassemia/diagnosis , alpha-Thalassemia/epidemiology , beta-Thalassemia/diagnosis , beta-Thalassemia/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...