Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 10(15): e2207390, 2023 May.
Article in English | MEDLINE | ID: mdl-36950722

ABSTRACT

A new approach for the stabilization of the ferroelectric orthorhombic ZrO2 films is demonstrated through nanosecond laser annealing (NLA) of as-deposited Si/SiOx /W(14 nm)/ZrO2 (8 nm)/W(22 nm), grown by ion beam sputtering at low temperatures. The NLA process optimization is guided by COMSOL multiphysics simulations. The films annealed under the optimized conditions reveal the presence of the orthorhombic phase, as confirmed by X-ray diffraction, electron backscatter diffraction, and transmission electron microscopy. Macroscopic polarization-electric field hysteresis loops show ferroelectric behavior, with saturation polarization of 12.8 µC cm-2 , remnant polarization of 12.7 µC cm-2 and coercive field of 1.2 MV cm-1 . The films exhibit a wake-up effect that is attributed to the migration of point defects, such as oxygen vacancies, and/or a transition from nonferroelectric (monoclinic and tetragonal phase) to the ferroelectric orthorhombic phase. The capacitors demonstrate a stable polarization with an endurance of 6.0 × 105 cycles, demonstrating the potential of the NLA process for the fabrication of ferroelectric memory devices with high polarization, low coercive field, and high cycling stability.

2.
PLoS One ; 14(12): e0225443, 2019.
Article in English | MEDLINE | ID: mdl-31805083

ABSTRACT

There is growing evidence that modification of tropical forests to pasture or other anthropic uses (anthropization) leads to land surface warming at local and regional scales; however, the degree of this effect is unknown given the dependence on physiographic and atmospheric conditions. We investigated the dependence of satellite land surface temperature (LST) on the fraction of anthropized area index, defined as the fraction of non-forested percentual area within 120m square boxes, sampled over a large tropical forest dominated ecosystem spatial domain in the Atlantic Forest biome, southeastern Brazil. The LST estimated at a 30 m resolution, showed a significant dependence on elevation and topographic aspect, which controlled the average thermal regime by 2~4°C and 1~2°C, respectively. The correction of LST by these topographic factors allowed to detect a dependence of LST on the fraction of non-forested area. Accordingly, the relationship between LST and the fraction of non-forested area showed a positive linear relationship (R2 = 0.63), whereby each 25% increase of non-forest area resulted in increased 1°C. As such, increase of the maximum temperature (~4°C) would occur in the case of 100% increase of non-forested area. We conclude that our study area, composed to Atlantic forest, appears to show regulatory characteristics of temperature attenuation as a local climatic ecosystem service, which may have mitigation effects on the accelerated global warming.


Subject(s)
Conservation of Natural Resources , Ecosystem , Forests , Temperature , Brazil , Tropical Climate
3.
J Mass Spectrom ; 42(10): 1310-8, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17902105

ABSTRACT

The gas-phase methylenation reaction between CH(3)S(+)=CH(2) and alkylbenzenes, aniline, phenol and alkyl phenyl ethers, which yields [M + CH](+) and CH(3)SH, has been studied by Fourier transform ion cyclotron resonance (FT-ICR) techniques and computational chemistry at the DFT level. The methylthiomethyl cation is less reactive than methoxymethyl and, unlike the latter, is unreactive toward benzene. The calculations suggest that reaction with toluene should proceed primarily by addition at the para and ortho positions resulting in a benzyl-type ion. Reaction with aniline-2,3,4,5,6-d(5) reveals that elimination of CH(3)SD is kinetically favored by a factor of 5 over elimination of CH(3)SH. Experiments with C(6)H(6)ND(2) and theoretical calculations suggest that methylenation at the nitrogen atom is energetically favorable and likely, but the observed results may reflect some H/D scrambling, which occurs after attack at a ring position. By comparison, reaction with phenol-2,3,4,5,6-d(5) reveals that methylenation followed by elimination of CH(3)SD is kinetically favored by a factor of 3.8 over elimination of CH(3)SH. For phenol, the theoretical calculations suggest that attack by CH(3)S(+)=CH(2) at the para or ortho position is the only low-energy pathway for methylenation. However, a low-energy pathway for hydrogen scrambling is predicted by the calculations originating from the exit complex, [CH(3)SH(...) CH(2)=C(6)H(4)=OH](+), of reaction at a ring position.

SELECTION OF CITATIONS
SEARCH DETAIL