Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Autism Res ; 16(11): 2150-2159, 2023 11.
Article in English | MEDLINE | ID: mdl-37749934

ABSTRACT

The Selective Social Attention (SSA) task is a brief eye-tracking task involving experimental conditions varying along socio-communicative axes. Traditionally the SSA has been used to probe socially-specific attentional patterns in infants and toddlers who develop autism spectrum disorder (ASD). This current work extends these findings to preschool and school-age children. Children 4- to 12-years-old with ASD (N = 23) and a typically-developing comparison group (TD; N = 25) completed the SSA task as well as standardized clinical assessments. Linear mixed models examined group and condition effects on two outcome variables: percent of time spent looking at the scene relative to scene presentation time (%Valid), and percent of time looking at the face relative to time spent looking at the scene (%Face). Age and IQ were included as covariates. Outcome variables' relationships to clinical data were assessed via correlation analysis. The ASD group, compared to the TD group, looked less at the scene and focused less on the actress' face during the most socially-engaging experimental conditions. Additionally, within the ASD group, %Face negatively correlated with SRS total T-scores with a particularly strong negative correlation with the Autistic Mannerism subscale T-score. These results highlight the extensibility of the SSA to older children with ASD, including replication of between-group differences previously seen in infants and toddlers, as well as its ability to capture meaningful clinical variation within the autism spectrum across a wide developmental span inclusive of preschool and school-aged children. The properties suggest that the SSA may have broad potential as a biomarker for ASD.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Infant , Humans , Child, Preschool , Child , Adolescent , Fixation, Ocular , Feasibility Studies , Attention , Biomarkers , Tomography, X-Ray Computed
2.
Mol Autism ; 13(1): 15, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35313957

ABSTRACT

BACKGROUND: Eye tracking (ET) is a powerful methodology for studying attentional processes through quantification of eye movements. The precision, usability, and cost-effectiveness of ET render it a promising platform for developing biomarkers for use in clinical trials for autism spectrum disorder (ASD). METHODS: The autism biomarkers consortium for clinical trials conducted a multisite, observational study of 6-11-year-old children with ASD (n = 280) and typical development (TD, n = 119). The ET battery included: Activity Monitoring, Social Interactive, Static Social Scenes, Biological Motion Preference, and Pupillary Light Reflex tasks. A priori, gaze to faces in Activity Monitoring, Social Interactive, and Static Social Scenes tasks were aggregated into an Oculomotor Index of Gaze to Human Faces (OMI) as the primary outcome measure. This work reports on fundamental biomarker properties (data acquisition rates, construct validity, six-week stability, group discrimination, and clinical relationships) derived from these assays that serve as a base for subsequent development of clinical trial biomarker applications. RESULTS: All tasks exhibited excellent acquisition rates, met expectations for construct validity, had moderate or high six-week stabilities, and highlighted subsets of the ASD group with distinct biomarker performance. Within ASD, higher OMI was associated with increased memory for faces, decreased autism symptom severity, and higher verbal IQ and pragmatic communication skills. LIMITATIONS: No specific interventions were administered in this study, limiting information about how ET biomarkers track or predict outcomes in response to treatment. This study did not consider co-occurrence of psychiatric conditions nor specificity in comparison with non-ASD special populations, therefore limiting our understanding of the applicability of outcomes to specific clinical contexts-of-use. Research-grade protocols and equipment were used; further studies are needed to explore deployment in less standardized contexts. CONCLUSIONS: All ET tasks met expectations regarding biomarker properties, with strongest performance for tasks associated with attention to human faces and weakest performance associated with biological motion preference. Based on these data, the OMI has been accepted to the FDA's Biomarker Qualification program, providing a path for advancing efforts to develop biomarkers for use in clinical trials.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/psychology , Autistic Disorder/diagnosis , Biomarkers , Child , Eye Movements , Eye-Tracking Technology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...