Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
bioRxiv ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39131318

ABSTRACT

Experimental access to cell types within the mammalian spinal cord is severely limited by the availability of genetic tools. To enable access to lower motor neurons (LMNs) and LMN subtypes, which function to integrate information from the brain and control movement through direct innervation of effector muscles, we generated single cell multiome datasets from mouse and macaque spinal cords and discovered putative enhancers for each neuronal population. We cloned these enhancers into adeno-associated viral vectors (AAVs) driving a reporter fluorophore and functionally screened them in mouse. The most promising candidate enhancers were then extensively characterized using imaging and molecular techniques and further tested in rat and macaque to show conservation of LMN labeling. Additionally, we combined enhancer elements into a single vector to achieve simultaneous labeling of upper motor neurons (UMNs) and LMNs. This unprecedented LMN toolkit will enable future investigations of cell type function across species and potential therapeutic interventions for human neurodegenerative diseases.

2.
bioRxiv ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38915722

ABSTRACT

The mammalian cortex is comprised of cells with different morphological, physiological, and molecular properties that can be classified according to shared properties into cell types. Defining the contribution of each cell type to the computational and cognitive processes that are guided by the cortex is essential for understanding its function in health and disease. We use transcriptomic and epigenomic cortical cell type taxonomies from mice and humans to define marker genes and enhancers, and to build genetic tools for cortical cell types. Here, we present a large toolkit for selective targeting of cortical populations, including mouse transgenic lines and recombinant adeno-associated virus (AAV) vectors containing genomic enhancers. We report evaluation of fifteen new transgenic driver lines and over 680 different enhancer AAVs covering all major subclasses of cortical cells, with many achieving a high degree of specificity, comparable with existing transgenic lines. We find that the transgenic lines based on marker genes can provide exceptional specificity and completeness of cell type labeling, but frequently require generation of a triple-transgenic cross for best usability/specificity. On the other hand, enhancer AAVs are easy to screen and use, and can be easily modified to express diverse cargo, such as recombinases. However, their use depends on many factors, such as viral titer and route of administration. The tools reported here as well as the scaled process of tool creation provide an unprecedented resource that should enable diverse experimental strategies towards understanding mammalian cortex and brain function.

3.
Science ; 382(6667): eadf6484, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824669

ABSTRACT

Human cortex transcriptomic studies have revealed a hierarchical organization of γ-aminobutyric acid-producing (GABAergic) neurons from subclasses to a high diversity of more granular types. Rapid GABAergic neuron viral genetic labeling plus Patch-seq (patch-clamp electrophysiology plus single-cell RNA sequencing) sampling in human brain slices was used to reliably target and analyze GABAergic neuron subclasses and individual transcriptomic types. This characterization elucidated transitions between PVALB and SST subclasses, revealed morphological heterogeneity within an abundant transcriptomic type, identified multiple spatially distinct types of the primate-specialized double bouquet cells (DBCs), and shed light on cellular differences between homologous mouse and human neocortical GABAergic neuron types. These results highlight the importance of multimodal phenotypic characterization for refinement of emerging transcriptomic cell type taxonomies and for understanding conserved and specialized cellular properties of human brain cell types.


Subject(s)
GABAergic Neurons , Interneurons , Neocortex , Animals , Humans , Mice , Electrophysiological Phenomena , GABAergic Neurons/metabolism , gamma-Aminobutyric Acid/metabolism , Interneurons/metabolism , Neocortex/cytology , Neocortex/metabolism , Patch-Clamp Techniques
4.
Genetics ; 208(2): 639-653, 2018 02.
Article in English | MEDLINE | ID: mdl-29233811

ABSTRACT

The Ca2+/calmodulin-dependent protein phosphatase calcineurin orchestrates sexual reproduction, stress responses, and virulence via branched downstream pathways in the opportunistic human fungal pathogen Cryptococcus neoformans The calcineurin-binding protein Cbp1, the calcineurin temperature suppressor Cts1, the calcineurin-responsive zinc finger transcription factor Crz1, and the calcineurin targets Pbp1, Tif3, and Puf4, all function downstream of calcineurin to orchestrate distinct cellular processes. To elucidate how the calcineurin pathway regulatory network governs unisexual reproduction, stress responses, and virulence, we have analyzed the self-filamentous C. deneoformans strain, XL280α, and generated double mutants of these calcineurin downstream genes. We demonstrated that calcineurin governs unisexual reproduction at different sexual developmental stages, in which the initiation of the yeast-hyphal morphological transition is independent of Crz1, whereas the sporulation process is dependent on Crz1. Calcineurin-dependent unisexual reproduction is independent of the pheromone response pathway. Crz1 synergistically interacts with different calcineurin downstream targets in responding to ER, high-calcium, and cell wall stresses. We observed a widespread synergy suggesting that these proteins function in complex branched pathways downstream of calcineurin with some functional redundancy, which may allow efficient signaling network rewiring within the pathway for prompt adaptation to changing environments. Finally, we showed that deletion of PBP1 or TIF3 in the cna1∆ mutant background conferred a modest level of growth tolerance at 37°, but that the cna1∆ pbp1∆ and cna1∆ tif3∆ double mutants were both avirulent, suggesting that calcineurin may control virulence via mechanisms beyond thermotolerance.


Subject(s)
Calcineurin/metabolism , Cryptococcus/physiology , Reproduction , Signal Transduction , Stress, Physiological , Calcineurin/genetics , Cryptococcosis/microbiology , Environment , Models, Molecular , Mutation , Pheromones/metabolism , Transcription Factors/metabolism , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL