Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 23(23): 6248-53, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24144851

ABSTRACT

A novel series of muscarinic receptor antagonists was developed, with the aim of identifying a compound with high M3 receptor potency and a reduced risk of dose-limiting side effects with potential for the treatment of COPD. Initial compound modifications led to a novel cycloheptyl series, which was improved by focusing on a quinuclidine sub-series. A wide range of N-substituents was evaluated to determine the optimal substituent providing a high M3 receptor potency, high intrinsic clearance and high human plasma protein binding. Compounds achieving in vitro study criteria were selected for in vivo evaluation. Pharmacokinetic half-lives, inhibition of bronchoconstriction and duration of action, as well as systemic side effects, induced by the compounds were assessed in guinea-pig models. Compounds with a long duration of action and good therapeutic index were identified and AZD8683 was selected for progression to the clinic.


Subject(s)
Cycloheptanes/chemistry , Cycloheptanes/pharmacology , Muscarinic Antagonists/administration & dosage , Muscarinic Antagonists/chemistry , Pulmonary Disease, Chronic Obstructive/drug therapy , Administration, Inhalation , Animals , Bronchoconstriction/drug effects , Cycloheptanes/pharmacokinetics , Disease Models, Animal , Guinea Pigs , Humans , Molecular Structure , Muscarinic Antagonists/pharmacokinetics , Receptors, Muscarinic/chemistry , Receptors, Muscarinic/metabolism
2.
Transpl Int ; 26(1): 22-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23137339

ABSTRACT

We have recently described the immunosuppressive properties of AR-C117977 and AR-C122982, representatives of a group of compounds identified as inhibitors of lactate transporters (monocarboxylate transporters; MCTs). These compounds demonstrate the potential therapeutic usefulness of inhibiting MCT-1, but their physical and metabolic properties made them unsuitable for further development. We have therefore tried to find analogues with similar immunosuppressive efficacy and a more suitable profile for oral administration. Five analogues of AR-C117977 were synthesised and screened for binding to the transporter, for inhibition of proliferation of both human and rat lymphocytes, for in vivo activity in a model of graft-versus-host (GvH) response in the rat, and in high- and low-responder cardiac transplant models in the rat. There was a good correlation between levels of binding of the five analogues to MCT and their inhibition of lymphocyte proliferation in human and rat cells. Furthermore, activity in both the GvH response and the cardiac transplant models correlated well with the determined concentrations of test compound in plasma. These findings on new analogues of MCT-1 inhibitors have taken us further towards defining the pharmacokinetic properties that may help to identify future drug candidates among inhibitors of MCT-1.


Subject(s)
Immunosuppressive Agents/pharmacology , Monocarboxylic Acid Transporters/antagonists & inhibitors , Symporters/antagonists & inhibitors , Animals , Graft Survival , Graft vs Host Disease/etiology , Heart Transplantation , Heterocyclic Compounds/pharmacokinetics , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/toxicity , Humans , Male , Rats , Rats, Inbred Lew
4.
Transplantation ; 84(9): 1191-9, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-17998876

ABSTRACT

BACKGROUND: In a search for immunosuppressive drugs having novel mechanisms, monocarboxylate transporter (MCT-1) inhibitors were identified that markedly inhibited immune responses. Here, we report the effects of AR-C117977, a potent MCT-1 inhibitor, on alloimmune responses in the rat. METHODS: In vitro activity was determined in a rat mixed lymphocyte response (MLR). In vivo activity was tested in a graft versus host response (GVHR) and in both high (DA to PVG) and low (PVG to DA) responder cardiac allograft models. To assess induction of donor-specific suppression recipients of allogeneic hearts surviving longer than 100 days received a second transplant either of the same donor strain or a third-party donor strain. Effects on chronic graft rejection were assessed histologically by evaluating vasculopathy in long-term surviving grafts and in an obliterative bronchiolitis (OB) model. RESULTS: AR-C117977 inhibited the rat MLR and was more potent than cyclosporin A (CsA). In the rat GVHR model, AR-C117977 gave a dose-related inhibition. In the high responder cardiac allograft model, graft survival in excess of 100 days was achieved with AR-C117977 compared with 20 days with CsA and all the long-term survivors exhibited donor-specific suppression on retransplantation. In the low responder model, both AR-C117977 and CsA induced survival in excess of 100 days. Histology of the long-term surviving grafts suggested reduced vasculopathy associated with chronic rejection. Furthermore, AR-C117977 inhibited the occlusion of transplanted trachea in a OB model. CONCLUSION: This report describes a MCT-1 specific inhibitor having immunosuppressive activity on alloimmune responses and inducing donor-specific suppression.


Subject(s)
Graft Rejection/prevention & control , Graft vs Host Reaction/immunology , Heart Transplantation/immunology , Heterocyclic Compounds/therapeutic use , Immunosuppressive Agents/therapeutic use , Monocarboxylic Acid Transporters/antagonists & inhibitors , Symporters/antagonists & inhibitors , Acute Disease , Animals , Atherosclerosis/pathology , Chronic Disease , Graft Survival/drug effects , Graft Survival/immunology , Heart Transplantation/pathology , Lymphocyte Culture Test, Mixed , Postoperative Complications/pathology , Rats , Rats, Inbred Lew , Transplantation, Homologous , Transplantation, Isogeneic
6.
J Med Chem ; 50(2): 254-63, 2007 Jan 25.
Article in English | MEDLINE | ID: mdl-17228867

ABSTRACT

We have previously described a novel series of potent blockers of the monocarboxylate transporter, MCT1, which show potent immunomodulatory activity in an assay measuring inhibition of PMA/ionomycin-induced human PBMC proliferation. However, the preferred compounds had the undesirable property of existing as a mixture of slowly interconverting rotational isomers. Here we show that variable temperature NMR is an effective method of monitoring how alteration to the nature of the amide substituent can modulate the rate of isomer exchange. This led to the design of compounds with increased rates of rotamer interconversion. Moreover, some of these compounds also showed improved potency and provided a route to further optimization.


Subject(s)
Isoxazoles/chemical synthesis , Monocarboxylic Acid Transporters/antagonists & inhibitors , Monocarboxylic Acid Transporters/chemistry , Naphthalenes/chemical synthesis , Pyrrolidines/chemical synthesis , Quinolines/chemical synthesis , Symporters/antagonists & inhibitors , Symporters/chemistry , Thiazolidines/chemical synthesis , Isomerism , Isoxazoles/chemistry , Kinetics , Magnetic Resonance Spectroscopy , Molecular Conformation , Naphthalenes/chemistry , Pyrrolidines/chemistry , Quinolines/chemistry , Thiazolidines/chemistry
7.
Nat Chem Biol ; 1(7): 371-6, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16370372

ABSTRACT

Current immunosuppressive therapies act on T lymphocytes by modulation of cytokine production, modulation of signaling pathways or by inhibition of the enzymes of nucleotide biosynthesis. We have identified a previously unknown series of immunomodulatory compounds that potently inhibit human and rat T lymphocyte proliferation in vitro and in vivo in immune-mediated animal models of disease, acting by a novel mechanism. Here we identify the target of these compounds, the monocarboxylate transporter MCT1 (SLC16A1), using a strategy of photoaffinity labeling and proteomic characterization. We show that inhibition of MCT1 during T lymphocyte activation results in selective and profound inhibition of the extremely rapid phase of T cell division essential for an effective immune response. MCT1 activity, however, is not required for many stages of lymphocyte activation, such as cytokine production, or for most normal physiological functions. By pursuing a chemistry-led target identification strategy, we have discovered that MCT1 is a previously unknown target for immunosuppressive therapy and have uncovered an unsuspected role for MCT1 in immune biology.


Subject(s)
Immunosuppressive Agents/pharmacology , Monocarboxylic Acid Transporters/drug effects , Symporters/drug effects , Animals , Cell Division/drug effects , Cell Line , Cell Proliferation/drug effects , Disease Models, Animal , Gene Expression Regulation , Graft vs Host Disease/immunology , Humans , Immunosuppressive Agents/immunology , In Vitro Techniques , Lactates/immunology , Lymphocyte Activation/drug effects , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Molecular Structure , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/immunology , Rats , Rats, Inbred Lew , Recombinant Proteins/drug effects , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Symporters/genetics , Symporters/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...