Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 33(11): e17347, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38624248

ABSTRACT

Clownfish (subfamily Amphiprioninae) are an iconic group of coral reef fish that evolved a mutualistic interaction with sea anemones, which triggered the adaptive radiation of the clade. Within clownfishes, the "skunk complex" is particularly interesting. Besides ecological speciation, interspecific gene flow and hybrid speciation are thought to have shaped the evolution of the group. We investigated the mechanisms characterizing the diversification of this complex. By taking advantage of their disjunct geographical distribution, we obtained whole-genome data of sympatric and allopatric populations of the three main species of the complex (Amphiprion akallopisos, A. perideraion and A. sandaracinos). We examined population structure, genomic divergence and introgression signals and performed demographic modelling to identify the most realistic diversification scenario. We excluded scenarios of strict isolation or hybrid origin of A. sandaracinos. We discovered moderate gene flow from A. perideraion to the ancestor of A. akallopisos + A. sandaracinos and weak gene flow between the species in the Indo-Australian Archipelago throughout the diversification of the group. We identified introgressed regions in A. sandaracinos and detected in A. perideraion two large regions of high divergence from the two other species. While we found that gene flow has occurred throughout the species' diversification, we also observed that recent admixture was less pervasive than initially thought, suggesting a role of host repartition or behavioural barriers in maintaining the genetic identity of the species in sympatry.


Subject(s)
Gene Flow , Genetic Speciation , Genetics, Population , Perciformes , Animals , Perciformes/genetics , Sympatry , Australia , Phylogeny , Coral Reefs , Symbiosis/genetics
2.
J Environ Manage ; 342: 118069, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37224656

ABSTRACT

Primary considerations for urban blue-green infrastructure (BGI) encompass sustainable stormwater/urban heat management while biodiversity conservation is often considered an inherent benefit rather than a core planning requirement. However, ecological function of BGI as 'stepping stones' or linear corridors for otherwise fragmented habitats is undisputed. While quantitative approaches for modelling ecological connectivity in conservation planning are well established, mismatches in scope and scale with models that support the planning of BGI makes their adoption and integration difficult across disciplines. Technical complexities have led to ambiguity around circuit and network-based approaches, focal node placement, spatial extents, and resolution. Furthermore, these approaches are often computationally intensive, and considerable gaps remain in their use for identifying local-scale critical "pinch-points" that urban planners may respond to with the integration of BGI interventions that address biodiversity enhancement among other ecosystem services. Here, we present a framework that simplifies and integrates the merits of regional connectivity assessments with a focus on urban areas to prioritise BGI planning interventions while reducing computational demands. Our framework facilitates: (1) modelling potential ecological corridors at a coarse regional scale, (2) prioritising local-scale BGI interventions based on the relative contribution of individual nodes in this regional network, and (3) inferring connectivity hot- and cold-spots for local-scale BGI interventions. We illustrate this in the Swiss lowlands, demonstrating how, compared to previous work, we are able to identify and rank different priority locations across the region for BGI interventions in support of biodiversity enhancement and how their local-scale functional design may be benefited by addressing specific environmental variables.


Subject(s)
Biodiversity , Ecosystem , Conservation of Natural Resources
3.
J Environ Manage ; 316: 115254, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35576714

ABSTRACT

Increasing urbanization degrades quantity, quality, and the functionality of spatial cohesion of natural areas essential to biodiversity and ecosystem functioning worldwide. The uncontrolled pace of building activity and the erosion of blue (i.e., aquatic) and green (i.e., terrestrial) landscape elements threaten existing habitat ranges and movability of wildlife. Local scale measures, such as nature-inspired engineered Blue-Green Infrastructure (BGI) are emerging mitigation solutions. Originally planned to promote sustainable stormwater management, adaptation to climate change and improved human livability in cities, such instruments offer interesting synergies for biodiversity in support of existing ecological infrastructure. BGI are especially appealing for globally declining amphibians, a rich and diverse vertebrate assemblage sensitive to urbanization. We integrated biological and highly resolved urban-rural land-cover data, ensemble models of habitat suitability, and connectivity models based on circuit theory to improve multi-scale and multi-species protection of core habitats and ecological corridors in the Swiss lowlands. Considering a broad spectrum of amphibian biodiversity, we identified distributions of amphibian biodiversity hotspots and four landscape elements essential to amphibian movability at the regional scale, namely i) forest edges, ii) wet-forest habitats, iii) soils with variable moisture and iv) riparian zones. Our work shows that cities can make a substantial contribution (e.g., up to 15% of urban space in the study area) to wider landscape habitat connectivity. We highlight the importance of planning BGI locally in strategic locations across urban and peri-urban areas to promote the permeability and availability of 'stepping stone' habitats in densely populated landscapes, essential to the maintenance of regional habitat connectivity and thereby enhancing biodiversity and ecosystem functioning.


Subject(s)
Biodiversity , Ecosystem , Cities , Conservation of Natural Resources , Forests , Humans , Urbanization
SELECTION OF CITATIONS
SEARCH DETAIL
...