Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 10(11): e0141459, 2015.
Article in English | MEDLINE | ID: mdl-26536608

ABSTRACT

Inter-specific competition is considered one of the main selective pressures affecting species distribution and coexistence. Different species vary in the way they forage in order to minimize encounters with their competitors and with their predators. However, it is still poorly known whether and how native species change their foraging behavior in the presence of exotic species, particularly in South America. Here we compare diet overlap of fruits and foraging activity period of two sympatric native ungulates (the white-lipped peccary, Tayassu pecari, and the collared peccary, Pecari tajacu) with the invasive feral pig (Sus scrofa) in the Brazilian Pantanal. We found high diet overlap between white-lipped peccaries and feral pigs, but low overlap between collared peccaries and feral pigs. Furthermore, we found that feral pigs may influence the foraging period of both native peccaries, but in different ways. In the absence of feral pigs, collared peccary activity peaks in the early evening, possibly allowing them to avoid white-lipped peccary activity peaks, which occur in the morning. In the presence of feral pigs, collared peccaries forage mostly in early morning, while white-lipped peccaries forage throughout the day. Our results indicate that collared peccaries may avoid foraging at the same time as white-lipped peccaries. However, they forage during the same periods as feral pigs, with whom they have lower diet overlap. Our study highlights how an exotic species may alter interactions between native species by interfering in their foraging periods.


Subject(s)
Artiodactyla/physiology , Diet , Feeding Behavior , Sus scrofa/physiology , Animals , Brazil , Female , Fruit , Male
2.
Ecol Lett ; 14(8): 773-81, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21699640

ABSTRACT

Mutualistic interactions involving pollination and ant-plant mutualistic networks typically feature tightly linked species grouped in modules. However, such modularity is infrequent in seed dispersal networks, presumably because research on those networks predominantly includes a single taxonomic animal group (e.g. birds). Herein, for the first time, we examine the pattern of interaction in a network that includes multiple taxonomic groups of seed dispersers, and the mechanisms underlying modularity. We found that the network was nested and modular, with five distinguishable modules. Our examination of the mechanisms underlying such modularity showed that plant and animal trait values were associated with specific modules but phylogenetic effect was limited. Thus, the pattern of interaction in this network is only partially explained by shared evolutionary history. We conclude that the observed modularity emerged by a combination of phylogenetic history and trait convergence of phylogenetically unrelated species, shaped by interactions with particular types of dispersal agents.


Subject(s)
Phylogeny , Seed Dispersal , Animals , Brazil , Ecosystem , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL