Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Language
Publication year range
1.
Commun Chem ; 6(1): 158, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37500812

ABSTRACT

Chemical depolymerization has been identified as a promising approach towards recycling of plastic waste. However, complete depolymerization may be energy intensive with complications in purification. In this work, we have demonstrated upcycling of mixed plastic waste comprising a mixture of polyester, polyamide, and polyurethane through a reprocessable vitrimer of the depolymerized oligomers. Using poly(ethylene terephthalate) (PET) as a model polymer, we first demonstrated partial controlled depolymerization, using glycerol as a cleaving agent, to obtain branched PET oligomers. Recovered PET (RPET) oligomer was then used as a feedstock to produce a crosslinked yet reprocessable vitrimer (vRPET) despite having a wide molecular weight distribution using a solventless melt processing approach. Crosslinking and dynamic interactions were observed through rheology and dynamic mechanical analysis (DMA). Tensile mechanical studies showed no noticeable decrease in mechanical strength over multiple repeated melt processing cycles. Consequently, we have clearly demonstrated the applicability of the above method to upcycle mixed plastic wastes into vitrimers and reprocessable composites. This work also afforded insights into a potentially viable alternative route for utilization of depolymerized plastic/mixed plastic waste into crosslinked vitrimer resins manifesting excellent mechanical strength, while remaining reprocessable/ recyclable for cyclical lifetime use.

2.
Int J Biol Macromol ; 126: 1192-1200, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30625356

ABSTRACT

A new bacterial lipolytic enzyme Est903 was obtained from paper mill sludge via metagenomic approach. Est903 displayed moderate similarities to two lipolytic enzymes from Rhodopirellula islandica and contained a distinctive pentapeptide motif (GFSAG) that differed from those of all known fourteen families of bacterial lipolytic enzymes. Est903 was regarded as from a new bacterial lipolytic enzyme family through multiple sequence alignment and phylogenetic analysis. The recombinant Est903 showed the highest activity for ρ-nitrophenol butyrate. The pH optimum and temperature optimum of the recombinant enzyme was 9.0 and 51 °C, respectively. Also, this enzyme displayed moderate thermostability, high activity under alkaline conditions, and good tolerance against several organic solvents. In addition, the compatibility test and washing performance analysis revealed that Est903 had good compatibility with commercial laundry detergent and high cleaning ability of oil stains. These good properties make Est903 a potential candidate in organic synthesis or detergent industry.


Subject(s)
Esterases/isolation & purification , Esterases/metabolism , Gene Library , Industrial Waste , Metagenomics , Paper , Sewage , Amino Acid Sequence , Detergents/pharmacology , Esterases/chemistry , Esterases/genetics , Indicators and Reagents , Ions , Metals/pharmacology , Phylogeny , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Solutions , Solvents/chemistry , Textiles
3.
Braz. arch. biol. technol ; 61: e18160347, 2018. tab, graf
Article in English | LILACS | ID: biblio-974080

ABSTRACT

ABSTRACT To seek a simple, rapid and sensitive Coprinus cinereus Peroxidase (CIP) activity assay, a convenient one-factor-at-a-time (OFAT) method and a response surface methodology (RSM) were used. The recombinant CIP expressed in Pichia pastoris was purified with the Ni-NTA spin column. Based on the results of catalytic efficiency (kcat/Km) analysis, 2,2'-azinobis (ethylbenzthiazoline -6-sulfonate) (ABTS) was selected as the optimal enzyme substrate. Results of the OFAT method showed that enzymatic reaction performed in 0.1 mol/L sodium acetate (pH 5.0) buffer in a 200-µl reaction mixture containing 0.5 mmol/L ABTS, 10 mmol/L hydrogen peroxide (H2O2), 49.7 ng CIP at 25°C gave an average CIP activity of 88 U/mL. The ABTS and H2O2 concentrations were then further optimized to improve the sensitivity of the assay. To do that, RSM was conducted through central composite design, and a reduced quadratic model with good fit regression equation was generated. ANOVA analysis of this model indicated that the concentrations of ABTS and H2O2 and their interaction had significant impact on the assay sensitivity. The optimal reaction mixture was determined to include an initial ABTS concentration of 0.82 mmol/L 49.7 ng CIP and 16.36 mmol/L H2O2, and the activity under this condition was determined to be 138.89 U/mL.

4.
Braz. arch. biol. technol ; 59: e16150357, 2016. tab, graf
Article in English | LILACS | ID: lil-774486

ABSTRACT

The aim of this work was to study the biodiesel production from cotton seed oil by lipase produced by Pichia guilliermondii lipase, which was immobilized onto hydrophobic magnetic particles (HMPs). The optimum reaction conditions were determined for lipase dosage, methanol-to-oil molar ratio, temperature and water content. Using response surface methodology, a quadratic polynomial equation was obtained for fatty acid methyl esters (FAMEs) content by multiple regression analysis. Verification experiments confirmed the validity of the predicted model. The optimal conditions for the enzymatic transesterification were temperature of 38.76℃, 31.3% immobilized lipase, 10.4% water content, and a methanol-to-oil molar ratio of 4.715:1. The gas chromatography- mass spectrometry showed that biodiesel was mainly composed of the methyl esters of hexadecanoic, 9,12-octadecadienoic and 9-octadecadienoic acid.

5.
Methods Mol Biol ; 1073: 9-17, 2013.
Article in English | MEDLINE | ID: mdl-23996435

ABSTRACT

Gene synthesis by chemical methods provides a powerful tool for modifying genes and exploring their structure, expression, and function in the post-genomic era. However, a bottleneck in recent gene synthesis technologies is the high cost of oligonucleotide synthesis and post-synthesis sequencing. Here, we describe a simple, rapid, and low-cost gene synthesis method based on overlap extension PCR (OE-PCR) and the DNAWorks program. This method enables DNA sequences with sizes ranging from 200 bp to 3 kb to be synthesized with few errors, and these errors can be easily corrected by site-directed mutagenesis. Thus, it is amenable to automation for the multiplexed synthesis of different genes and has a potential for high-throughput gene synthesis.


Subject(s)
Computational Biology/methods , DNA/chemical synthesis , Genes, Synthetic , Polymerase Chain Reaction , Software , Genetic Engineering/methods , Internet , Mutagenesis, Site-Directed , Polymerase Chain Reaction/methods , Synthetic Biology/methods
SELECTION OF CITATIONS
SEARCH DETAIL