Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4905, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851776

ABSTRACT

The moiré potential serves as a periodic quantum confinement for optically generated excitons, creating spatially ordered zero-dimensional quantum systems. However, a broad emission spectrum resulting from inhomogeneity among moiré potentials hinders the investigation of their intrinsic properties. In this study, we demonstrated a method for the optical observation of quantum coherence and interference of a single moiré exciton in a twisted semiconducting heterobilayer beyond the diffraction limit of light. We observed a single and sharp photoluminescence peak from a single moiré exciton following nanofabrication. Our findings revealed the extended duration of quantum coherence in a single moiré exciton, persisting beyond 10 ps, and an accelerated decoherence process with increasing temperature and excitation power density. Moreover, quantum interference experiments revealed the coupling between moiré excitons in different moiré potential minima. The observed quantum coherence and interference of moiré exciton will facilitate potential applications of moiré quantum systems in quantum technologies.

2.
ACS Nano ; 17(14): 13715-13723, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37450661

ABSTRACT

The moiré potential, induced by stacking two monolayer semiconductors with slightly different lattice mismatches, acts as periodic quantum confinement for optically generated excitons, resulting in spatially ordered zero-dimensional quantum systems. However, there are limitations to exploring intrinsic optical properties of moiré excitons due to ensemble emissions and broadened emissions from many peaks caused by the inhomogeneity of the moiré potential. In this study, we proposed a microfabrication technique based on focused Ga+ ion beams, which enables us to control the number of peaks originating from the moiré potential and thus explore unknown moiré optical characteristics of WSe2/MoSe2 heterobilayer. By taking advantage of this approach, we reveal emissions from a single moiré exciton and charged moiré exciton (trion) under electrostatic doping conditions. We show the momentum dark moiré trion state above the bright trion state with a splitting energy of approximately 4 meV and clarify that the dynamics are determined by the initial trion population in the bright state. Furthermore, the degree of negative circularly polarized emissions and their valley dynamics of moiré trions are dominated by a very long valley relaxation process lasting ∼700 ns. Our findings on microfabricated heterobilayer could be viewed as an extension of our groundbreaking efforts in the field of quantum optics application using moiré superlattices.

SELECTION OF CITATIONS
SEARCH DETAIL