Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.156
Filter
1.
Blood Sci ; 6(2): e00187, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38721470

ABSTRACT

Hematopoietic stem cells (HSCs) have been considered to progressively lose their self-renewal and differentiation potentials prior to the commitment to each blood lineage. However, recent studies have suggested that megakaryocyte progenitors (MkPs) are generated at the level of HSCs. In this study, we newly identified early megakaryocyte lineage-committed progenitors (MgPs) mainly in CD201-CD48- cells and CD48+ cells separated from the CD150+CD34-Kit+Sca-1+Lin- HSC population of the bone marrow in adult mice. Single-cell colony assay and single-cell transplantation showed that MgPs, unlike platelet-biased HSCs, had little repopulating potential in vivo, but formed larger megakaryocyte colonies in vitro (on average 8 megakaryocytes per colony) than did previously reported MkPs. Single-cell RNA sequencing supported that HSCs give rise to MkPs through MgPs along a Mk differentiation pathway. Single-cell reverse transcription polymerase chain reaction (RT-PCR) analysis showed that MgPs expressed Mk-related genes, but were transcriptionally heterogenous. Clonal culture of HSCs suggested that MgPs are not direct progeny of HSCs. We propose a differentiation model in which HSCs give rise to MgPs which then give rise to MkPs, supporting a classic model in which Mk-lineage commitment takes place at a late stage of differentiation.

2.
Nat Nanotechnol ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740936

ABSTRACT

Diabetic foot ulcers often become infected, leading to treatment complications and increased risk of loss of limb. Therapeutics to manage infection and simultaneously promote healing are needed. Here we report on the development of a Janus liposozyme that treats infections and promotes wound closure and re-epithelialization. The Janus liposozyme consists of liposome-like selenoenzymes for reactive oxygen species (ROS) scavenging to restore tissue redox and immune homeostasis. The liposozymes are used to encapsulate photosensitizers for photodynamic therapy of infections. We demonstrate application in methicillin-resistant Staphylococcus aureus-infected diabetic wounds showing high ROS levels for antibacterial function from the photosensitizer and nanozyme ROS scavenging from the liposozyme to restore redox and immune homeostasis. We demonstrate that the liposozyme can directly regulate macrophage polarization and induce a pro-regenerative response. By employing single-cell RNA sequencing, T cell-deficient Rag1-/- mice and skin-infiltrated immune cell analysis, we further reveal that IL-17-producing γδ T cells are critical for mediating M1/M2 macrophage transition. Manipulating the local immune homeostasis using the liposozyme is shown to be effective for skin wound repair and tissue regeneration in mice and mini pigs.

3.
ACS Appl Mater Interfaces ; 16(19): 25581-25588, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38708910

ABSTRACT

Diamond has become a promising candidate for high-power devices based on its ultrawide bandgap and excellent thermoelectric properties, where an appropriate gate dielectric has been a bottleneck hindering the development of diamond devices. Herein, we have systematically investigated the structural arrangement and electronic properties of diamond/high-κ oxide (HfO2, ZrO2) heterojunctions by first-principles calculations with a SiO2 interlayer. Charge analysis reveals that the C-Si bonding interface attracts a large amount of charge concentrated at the diamond interface, indicating the potential for the formation of a 2D hole gas (2DHG). The diamond/HfO2 and diamond/ZrO2 heterostructures exhibit similar "Type II" band alignments with VBOs of 2.47 and 2.21 eV, respectively, which is consistent with experimental predictions. The introduction of a SiO2 dielectric layer into the diamond/SiO2/high-κ stacks exhibits the typical "Type I″ straddling band offsets (BOs). In addition, the wide bandgap SiO2 interlayer keeps the valence band maximum (VBM) and conduction band minimum (CBM) in the stacks away from those of diamond, effectively confining the electrons and holes in MOS devices. This work exhibits the potential of SiO2/high-κ oxide gate dielectrics for diamond devices and provides theoretical insights into the rational design of high-quality gate dielectrics for diamond-based MOS device applications.

4.
Chemistry ; : e202401400, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38736421

ABSTRACT

Coumestan represents a biologically relevant structural motif distributed in a number of natural products, and the rapid construction of related derivatives as well as the characterization of targets would accelerate lead compound discovery in medicinal chemistry. In this work, a general and scalable approach to 8,9-dihydroxycoumestans via two-electrode constant current electrolysis was developed. The application of a two-phase (aqueous/organic) system plays a crucial role for success, protecting the sensitive o-benzoquinone intermediates from over-oxidation. Based on the structurally diverse products, a primary SAR study on coumestan scaffold was completed, and compound 3r exhibited potent antiproliferative activities and a robust topoisomerase I (Top1) inhibitory activity. Further mechanism studies demonstrates that compound 3r was a novel Top1 poison, which might open an avenue for the development of Top1-targeted antitumor agent.

5.
Protein Cell ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721703

ABSTRACT

The maintenance of hematopoietic stem cells (HSCs) is a complex process involving numerous cell-extrinsic and -intrinsic regulators. The first member of the cyclin-dependent kinase family of inhibitors to be identified, p21, has been reported to perform a wide range of critical biological functions, including cell cycle regulation, transcription, differentiation, and so on. Given the previous inconsistent results regarding the functions of p21 in HSCs in a p21-knockout mouse model, we employed p21-tdTomato (tdT) mice to further elucidate its role in HSCs during homeostasis. The results showed that p21-tdT+ HSCs exhibited increased self-renewal capacity compared to p21-tdT- HSCs. Zbtb18, a transcriptional repressor, was upregulated in p21-tdT+ HSCs, and its knockdown significantly impaired the reconstitution capability of HSCs. Furthermore, p21 interacted with ZBTB18 to co-repress the expression of cKit in HSCs and thus regulated the self-renewal of HSCs. Our data provide novel insights into the physiological role and mechanisms of p21 in HSCs during homeostasis independent of its conventional role as a cell cycle inhibitor.

6.
Nanoscale ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757969

ABSTRACT

Sulfur dioxide poisoning is a significant factor in catalyst deactivation during the catalytic combustion of volatile organic compounds. In this study, we prepared the LaCoO3 and Co3O4 composite catalysts using both the Ship-in-Bottle and Building-Bottle-Around-Ship approaches. Three-dimensionally ordered macropores (3DOM LaCoO3) were utilized as nanoreactors to protect the active sites during the catalytic combustion of toluene, preventing SO2 poisoning. Additionally, we grew ZIF-67 confined in the nanoreactor to create a multistage-pore structure. The Co3O4@3DOM LaCoO3 catalysts exhibited excellent activity in the complete catalytic oxidation of toluene. Various characterization studies confirmed the presence of a significant number of Co3+ species and an abundance of surface weak acid sites in the Co3O4@3DOM LaCoO3 catalysts, which synergistically enhanced the conversion of VOCs at low temperatures. Notably, the multistage pore structure provided a favorable reaction environment, accelerating the adsorption and diffusion of toluene and intermediates, resulting in excellent sulfur resistance of the catalysts. Moreover, XPS analysis confirmed a strong interaction between Co3O4 and LaCoO3, promoting rapid electron transfer and increasing the activation of O2-. In situ DRIFTS experiments verified that toluene mainly follows the MvK mechanism over Co3O4@3DOM LaCoO3 catalysts, indicating the following reaction pathway: toluene adsorption → benzyl alcohol → benzaldehyde → benzoate → anhydride → CO2 and H2O.

7.
Eur J Nutr ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758363

ABSTRACT

PURPOSE: Major depressive disorder (MDD) is frequently accompanied by the symptoms of clinical anxiety. Since our previous research has found that n-3 PUFA supplementation alleviates anxiety in MDD, this study was aimed to further explore whether n-3 PUFA supplementation improves anxiety symptoms in depression by directly manipulating fatty acid levels. METHODS: A secondary analysis of biomarker data (erythrocyte fatty acid composition) collected as part of the randomized clinical trial which investigated the adjunctive effect of n-3 PUFAs was conducted on 72 venlafaxine-treated outpatients with first-diagnosed, drug-naïve depression. All participants with longitudinal biomarker data were included in the association analysis to determine how n-3 PUFA supplementation influences fatty acid composition and alleviates anxiety symptoms in depression. RESULTS: Decreases of the C20:3n6 were found in all participants at both follow-up time points (χ2 = 96.36, p = 0.000). The n-3 index (χ2 = 10.59, p = 0.001), EPA (χ2 = 24.31, p = 0.000), and C22:5n3/C20:5n3 ratio (χ2 = 10.71, p = 0.001) were increased, while C22:4n6 (χ2 = 7.703, p = 0.006) was decreased in n-3 PUFA group compared to the placebo group. The improvement in anxiety symptoms positively correlates with the extent of reduction of C16:0, C18:0, and total fatty acid levels as well as D5 desaturase activity (p < 0.05). CONCLUSION: These data suggest that the anxiolytic effect exerted by n-3 PUFAs in first-diagnosed, drug-naïve depression is manipulated by erythrocyte fatty acid levels. Saturated fatty acid levels have an important role in predicting the severity of anxiety symptoms.

8.
Article in English | MEDLINE | ID: mdl-38709251

ABSTRACT

Elevated intracellular Ca2+ concentration ([Ca2+]i) is a key trigger for pulmonary arterial smooth muscle cell (PASMC) proliferation and contributes greatly to pulmonary hypertension (PH). Extracellular Ca2+ influx via a store-operated Ca2+ channel (SOCC), termed store-operated Ca2+ entry (SOCE), is a crucial mechanism for [Ca2+]i elevation in PASMCs. Calcium release-activated calcium modulator (Orai) proteins, consisting of three members (Orai1-3), are the main components of SOCC. Sodium houttuyfonate (SH) is a product of the addition reaction of sodium bisulfite and houttuynin and has antibacterial, anti-inflammatory, and other properties. In this study, we assessed the contributions of Orai proteins to MCT-enhanced SOCE, [Ca2+]i, and cell proliferation in PASMCs and determined the effect of SH on MCT-PH and the underlying mechanism, focusing on Orai proteins, SOCE, and [Ca2+]i in PASMCs. Our results showed that 1) Orai1 and Orai2 were selectively upregulated in the distal pulmonary arteries (PAs) and the PASMCs of MCT-PH rats. 2) Knockdown of Orai1 or Orai2 reduced SOCE, [Ca2+]i, and cell proliferation without affecting their expression in PASMCs in MCT-PH rats. 3) SH significantly normalized the characteristic parameters in a dose-dependent manner in the MCT-PH rat model. 4) SH decreased MCT-enhanced SOCE, [Ca2+]i and PASMC proliferation via Orai1 or Orai2. These results indicate that SH likely exerts its protective role in MCT-PH by inhibiting the Orai1,2-SOCE-[Ca2+]i signaling pathway.

9.
Sci China Life Sci ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38568343

ABSTRACT

Detecting genes that affect specific traits (such as human diseases and crop yields) is important for treating complex diseases and improving crop quality. A genome-wide association study (GWAS) provides new insights and directions for understanding complex traits by identifying important single nucleotide polymorphisms. Many GWAS summary statistics data related to various complex traits have been gathered recently. Studies have shown that GWAS risk loci and expression quantitative trait loci (eQTLs) often have a lot of overlaps, which makes gene expression gradually become an important intermediary to reveal the regulatory role of GWAS. In this review, we review three types of gene-trait association detection methods of integrating GWAS summary statistics and eQTLs data, namely colocalization methods, transcriptome-wide association study-oriented approaches, and Mendelian randomization-related methods. At the theoretical level, we discussed the differences, relationships, advantages, and disadvantages of various algorithms in the three kinds of gene-trait association detection methods. To further discuss the performance of various methods, we summarize the significant gene sets that influence high-density lipoprotein, low-density lipoprotein, total cholesterol, and triglyceride reported in 16 studies. We discuss the performance of various algorithms using the datasets of the four lipid traits. The advantages and limitations of various algorithms are analyzed based on experimental results, and we suggest directions for follow-up studies on detecting gene-trait associations.

10.
Am J Transl Res ; 16(3): 933-939, 2024.
Article in English | MEDLINE | ID: mdl-38586103

ABSTRACT

A 32-year-old woman with preeclampsia who presented with persistent severe hypertension and epigastric pain underwent an emergency cesarean section for fetal distress and was diagnosed with hepatic rupture and HELLP (hemolysis, elevated liver enzymes, and a low platelet) syndrome. After the operation, the patient was transferred to the intensive care unit for supportive treatment and management of complications. Diagnosis and treatment decisions were made through multidisciplinary management. The patient received plasma exchange and continuous renal replacement therapy. One week after the operation, the patient developed deep vein thrombosis and received anticoagulant therapy, which triggered rebleeding. Conservative treatment was taken, including halving the dosage of anticoagulant medication and performing a blood transfusion, and the patient's condition gradually stabilized. The patient was discharged 44 days after the operation. Early diagnosis, effective treatment, and multidisciplinary management can help patients with this critical presentation achieve good clinical outcomes.

11.
Biosens Bioelectron ; 256: 116280, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38603840

ABSTRACT

Monitoring biomarkers in human interstitial fluids (ISF) using microneedle sensors has been extensively studied. However, most of the previous studies were limited to simple in vitro demonstrations and lacked system integration and analytical performance. Here we report a miniaturized, high-precision, fully integrated wearable electrochemical microneedle sensing device that works with a customized smartphone application to wirelessly and in real-time monitor glucose in human ISF. A microneedle array fabrication method is proposed which enables multiple individually addressable, regionally separated sensing electrodes on a single microneedle system. As a demonstration, a glucose sensor and a differential sensor are integrated in a single sensing patch. The differential sensing electrodes can eliminate common-mode interference signals, thus significantly improving the detection accuracy. The basic mechanism of microneedle penetration into the skin was analyzed using the finite element method (FEM). By optimizing the structure of the microneedle, the puncture efficiency was improved while the puncture force was reduced. The electrochemical properties, biocompatibility, and system stability of the microneedle sensing device were characterized before human application. The test results were closely correlated with the gold standard (blood). The platform can be used not only for glucose detection, but also for various ISF biomarkers, and it expands the potential of microneedle technology in wearable sensing.


Subject(s)
Biosensing Techniques , Equipment Design , Extracellular Fluid , Glucose , Needles , Wearable Electronic Devices , Humans , Extracellular Fluid/chemistry , Biosensing Techniques/instrumentation , Glucose/analysis , Smartphone , Blood Glucose Self-Monitoring/instrumentation , Continuous Glucose Monitoring
12.
Int Immunopharmacol ; 133: 112168, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38688133

ABSTRACT

Ischemic stroke is the primary reason for human disability and death, but the available treatment options are limited. Hence, it is imperative to explore novel and efficient therapies. In recent years, pyroptosis (a pro-inflammatory cell death characterized by inflammation) has emerged as an important pathological mechanism in ischemic stroke that can cause cell death through plasma membrane rupture and release of inflammatory cytokines. Pyroptosis is closely associated with inflammation, which exacerbates the inflammatory response in ischemic stroke. The level of inflammasomes, GSDMD, Caspases, and inflammatory factors is increased after ischemic stroke, exacerbating brain injury by mediating pyroptosis. Hence, inhibition of pyroptosis can be a therapeutic strategy for ischemic stroke. In this review, we have summarized the relationship between pyroptosis and ischemic stroke, as well as a series of treatments to attenuate pyroptosis, intending to provide insights for new therapeutic targets on ischemic stroke.


Subject(s)
Inflammasomes , Ischemic Stroke , Pyroptosis , Pyroptosis/drug effects , Humans , Ischemic Stroke/drug therapy , Ischemic Stroke/immunology , Ischemic Stroke/metabolism , Animals , Inflammasomes/metabolism , Signal Transduction , Molecular Targeted Therapy
13.
Int J Biol Macromol ; 267(Pt 1): 131407, 2024 May.
Article in English | MEDLINE | ID: mdl-38582463

ABSTRACT

Succinate dehydrogenase (SDH) is an important inner mitochondrial membrane-bound enzyme involved in redox reactions during the tricarboxylic acid cycle. Therefore, a series of novel chitosan derivatives were designed and synthesized as potential microbicides targeting SDH and precisely characterized by FTIR, 1H NMR and SEM. Their antifungal and antibacterial activities were evaluated against Botrytis cinerea, Fusarium graminearum, Staphylococcus aureus and Escherichia coli. The bioassays revealed that these chitosan derivatives exerted significant antifungal effects, with four of the compounds achieving 100 % inhibition of Fusarium graminearum merely at a concentration of 0.5 mg/mL. Additionally, CSGDCH showed 79.34 % inhibition of Botrytis cinerea at a concentration of 0.1 mg/mL. In vitro antibacterial tests revealed that CSGDCH and CSGDBH have excellent Staphylococcus aureus and Escherichia coli inhibition with MICs of 0.0156 mg/mL and 0.03125 mg/mL, respectively. Molecular docking studies have been carried out to explore the binding energy and binding mode of chitosan and chitosan derivatives with SDH. The analyses indicated that chitosan derivatives targeted the active site of the SDH protein more precisely, disrupting its normal function and ultimately repressing the growth of microbial cells. Furthermore, the chitosan derivatives were also evaluated biologically for antioxidation, and all of these compounds had a greater degree of reducing power, superoxide radical, hydroxyl radical and DPPH-radical scavenging activity than chitosan. This research has the potential for the development of agricultural antimicrobial agents.


Subject(s)
Antioxidants , Chitosan , Enzyme Inhibitors , Molecular Docking Simulation , Schiff Bases , Succinate Dehydrogenase , Chitosan/chemistry , Chitosan/pharmacology , Succinate Dehydrogenase/antagonists & inhibitors , Succinate Dehydrogenase/metabolism , Succinate Dehydrogenase/chemistry , Schiff Bases/chemistry , Schiff Bases/pharmacology , Schiff Bases/chemical synthesis , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Glycine/chemistry , Glycine/analogs & derivatives , Glycine/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Escherichia coli/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Fusarium/drug effects , Botrytis/drug effects , Chemistry Techniques, Synthetic
14.
Reg Anesth Pain Med ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658058

ABSTRACT

BACKGROUND: The dural puncture epidural technique has been shown in some studies to improve the onset and quality of the initiation of labor analgesia compared with the standard epidural technique. However, few studies have investigated whether this technique confers advantages during the maintenance of analgesia. This randomized double-blinded controlled study compared dural puncture epidural analgesia with standard epidural analgesia when analgesia was maintained using programmed intermittent epidural boluses. METHODS: 400 parturients requesting epidural labor analgesia were randomized to have analgesia initiated with a test dose of 3 mL lidocaine 1.5% with epinephrine 15 µg, followed by 12 mL ropivacaine 0.15% mixed with sufentanil 0.5 µg/mL using the dural puncture epidural or the standard epidural technique. After confirming satisfactory analgesia, analgesia was maintained with ropivacaine 0.1% and sufentanil 0.5 µg/mL via programmed intermittent epidural boluses (fixed volume 8 mL, intervals 40 min). We compared local anesthetic consumption, pain scores, obstetric and neonatal outcomes and patient satisfaction. RESULTS: A total of 339 patients completed the study and had data analyzed. There were no differences between the dural puncture epidural and standard epidural groups in ropivacaine consumption (mean difference -0.724 mg, 95% CI of difference -1.450 to 0.001 mg, p=0.051), pain scores, time to first programmed intermittent epidural bolus, the number of programmed intermittent epidural boluses, the number of manual epidural boluses, obstetric outcome or neonatal outcome. Patient satisfaction scores were statistically higher in the dural puncture epidural group but the absolute difference in scores was small. CONCLUSION: Our findings suggest that when labor analgesia is maintained using the programmed intermittent epidural bolus method, there is no significant advantage to initiating analgesia using the dural puncture epidural compared with the standard epidural technique. TRIAL REGISTRATION NUMBER: ChiCTR2200062349.

15.
Int J Biol Macromol ; 268(Pt 2): 131736, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38653433

ABSTRACT

A novel cationic lipoic acid grafted low molecular weight chitosan (LCNE-LA) conjugate was constructed and further self-assembled into GSH-responsive cationic nanocarrier to achieve better antitumor effect by combining encapsulated chemotherapy and oxidative damage induced by ROS. The resultant LCNE-LA cationic micelle exhibited favorable physicochemical properties (low CMC, small size, positively zeta potential and good stability), excellent biosafety and desired redox sensitivity. Next, doxorubicin (Dox) was embedded into hydrophobic core to form stable Dox/LCNE-LA micelle that had superior loading capacity. The GSH-induced release behavior, cellular uptake ability, ROS generation and GSH consumption capacity and in vitro antitumor activity of Dox/LCNE-LA micelle were systematically evaluated. Consequently, Dox/LCNE-LA cationic micelle with positively charged could efficiently enter into cancer cell and redox-sensitive release Dox via disulfide-thiol exchange reaction, which usually expend abundant GSH and disrupt redox homeostasis. Studies further confirmed that Dox/LCNE-LA micelle could increase ROS and reduced GSH content which might cause oxidative damage to tumor cell. Antitumor activity indicated that Dox/LCNE-LA micelle achieved an excellent cancer-killing effect, which might be attributed to combination treatment of Dox and ROS induce oxidative damage. Overall, this research was expected to provide a platform for antitumor treatment by triggering Dox release and promoting ROS generation.

16.
Emerg Microbes Infect ; 13(1): 2332670, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38646911

ABSTRACT

This study aimed to provide data for the clinical features of invasive pneumococcal disease (IPD) and the molecular characteristics of Streptococcus pneumoniae isolates from paediatric patients in China. We conducted a multi-centre prospective study for IPD in 19 hospitals across China from January 2019 to December 2021. Data of demographic characteristics, risk factors for IPD, death, and disability was collected and analysed. Serotypes, antibiotic susceptibility, and multi-locus sequence typing (MLST) of pneumococcal isolates were also detected. A total of 478 IPD cases and 355 pneumococcal isolates were enrolled. Among the patients, 260 were male, and the median age was 35 months (interquartile range, 12-46 months). Septicaemia (37.7%), meningitis (32.4%), and pneumonia (27.8%) were common disease types, and 46 (9.6%) patients died from IPD. Thirty-four serotypes were detected, 19F (24.2%), 14 (17.7%), 23F (14.9%), 6B (10.4%) and 19A (9.6%) were common serotypes. Pneumococcal isolates were highly resistant to macrolides (98.3%), tetracycline (94.1%), and trimethoprim/sulfamethoxazole (70.7%). Non-sensitive rates of penicillin were 6.2% and 83.3% in non-meningitis and meningitis isolates. 19F-ST271, 19A-ST320 and 14-ST876 showed high resistance to antibiotics. This multi-centre study reports the clinical features of IPD and demonstrates serotype distribution and antibiotic resistance of pneumococcal isolates in Chinese children. There exists the potential to reduce IPD by improved uptake of pneumococcal vaccination, and continued surveillance is warranted.


Subject(s)
Anti-Bacterial Agents , Multilocus Sequence Typing , Pneumococcal Infections , Serogroup , Streptococcus pneumoniae , Humans , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/classification , Streptococcus pneumoniae/isolation & purification , Male , Pneumococcal Infections/microbiology , Pneumococcal Infections/epidemiology , Pneumococcal Infections/mortality , Female , Child, Preschool , China/epidemiology , Infant , Anti-Bacterial Agents/pharmacology , Prospective Studies , Microbial Sensitivity Tests , Hospitals/statistics & numerical data , Child , Risk Factors , East Asian People
17.
J Food Sci ; 89(5): 3078-3093, 2024 May.
Article in English | MEDLINE | ID: mdl-38605580

ABSTRACT

Human milk contains a variety of microorganisms that exert benefit for human health. In the current study, we isolated a novel Lactobacillus gasseri strain named Lactobacillus gasseri (L. gasseri) SHMB 0001 from human milk and aimed to evaluate the probiotic characteristics and protective effects on murine colitis of the strain. The results showed that L. gasseri SHMB 0001 possessed promising potential probiotic characteristics, including good tolerance against artificial gastric and intestinal fluids, adhesion to Caco-2 cells, susceptibility to antibiotic, no hemolytic activity, and without signs of toxicity or infection in mice. Administration of L. gasseri SHMB 0001 (1 × 108 CFU per gram of mouse weight per day) reduced weight loss, the disease activity index, and colon shortening in mice during murine colitis conditions. Histopathological analysis revealed that L. gasseri SHMB 0001 treatment attenuated epithelial damage and inflammatory infiltration in the colon. L. gasseri SHMB 0001 treatment increased the expression of colonic occludin and claudin-1 while decreasing the expression of pro-inflammatory cytokine genes. L. gasseri SHMB 0001 modified the composition and structure of the gut microbiota community and partially recovered the Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways altered by dextran sulfate sodium (DSS). Overall, our results indicated that the human breast milk-derived L. gasseri SHMB 0001 exhibited promising probiotic properties and ameliorative effect on DSS-induced colitis in mice. L. gasseri SHMB 0001 may be applied as a promising probiotic against intestinal inflammation in the future. PRACTICAL APPLICATION: L. gasseri SHMB 0001 isolated from human breast milk showed good tolerance to gastrointestinal environment, safety, and protective effect against DSS-induced mice colitis via enforcing gut barrier, downregulating pro-inflammatory cytokines, and modulating gut microbiota. L. gasseri SHMB 0001 may be a promising probiotic candidate for the treatment of intestinal inflammation.


Subject(s)
Colitis , Dextran Sulfate , Gastrointestinal Microbiome , Lactobacillus gasseri , Milk, Human , Probiotics , Probiotics/pharmacology , Animals , Humans , Mice , Colitis/chemically induced , Colitis/therapy , Colitis/microbiology , Dextran Sulfate/adverse effects , Gastrointestinal Microbiome/drug effects , Caco-2 Cells , Female , Colon/microbiology , Colon/pathology , Colon/metabolism , Cytokines/metabolism , Disease Models, Animal
18.
Front Oncol ; 14: 1359985, 2024.
Article in English | MEDLINE | ID: mdl-38655141

ABSTRACT

We report a case of well-differentiated papillary mesothelial tumor (WDPMT) diagnosed using internal thoracoscopic biopsy in a patient who has suffered from recurrent pleural effusions for over 35 years together with a history of elevated CA125. We hope to provide a case for the diagnosis of this rare benign and preinvasive pleural tumor and recommend that internal thoracoscopy may be a good choice in these recurrent pleural effusion patients especially for those minimal lesions not easily detected using CT scan.

19.
Anal Chim Acta ; 1305: 342588, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38677842

ABSTRACT

BACKGROUND: Sulfur dioxide (SO2) is a significant gas signaling molecule in organisms, and viscosity is a crucial parameter of the cellular microenvironment. They are both involved in regulating many physiological processes in the human body. However, abnormalities in SO2 and viscosity levels are associated with various diseases, such as cardiovascular disease, lung cancer, respiratory diseases, neurological disorders, diabetes and Alzheimer's disease. Hence, it is essential to explore novel and efficient fluorescent probes for simultaneously monitoring SO2 and viscosity in organisms. RESULTS: We selected quinolinium salt with good stability, high fluorescence intensity, good solubility and low cytotoxicity as the fluorophore and developed a highly sensitive ratiometric probe QQD to identify SO2 and viscosity changes based on Förster resonance energy transfer/twisted intramolecular charge transfer (FRET/TICT) mechanism. Excitingly, compared with other probes for SO2 detection, QQD not only identified HSO3-/SO32- with a large Stokes shift (218 nm), low detection limit (1.87 µM), good selectivity, high energy transfer efficiency (92 %) and wide recognition range (1.87-200 µM), but also identified viscosity with a 26-fold fluorescence enhancement and good linearity. Crucially, QQD was applied to detect HSO3-/SO32- and viscosity in actual water and food samples. In addition, QQD had low toxicity and good photostability for imaging HSO3-/SO32- and viscosity in cells. These results confirmed the feasibility and reliability of QQD for HSO3-/SO32- and viscosity imaging and environmental detection. SIGNIFICANCE: We reported a unique ratiometric probe QQD for detecting HSO3-/SO32- and viscosity based on the quinolinium skeleton. In addition to detecting HSO3-/SO32- and viscosity change in actual water and food samples, QQD could also monitor the variations of HSO3-/SO32- and viscosity in cells, which provided an experimental basis for further exploration of the role of SO2 derivatives and viscosity in biological systems.


Subject(s)
Fluorescence Resonance Energy Transfer , Fluorescent Dyes , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Viscosity , Humans , Sulfur Dioxide/analysis , Sulfites/analysis , Sulfites/chemistry , Limit of Detection , Quinolinium Compounds/chemistry
20.
Int J Biol Macromol ; 265(Pt 1): 130636, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38467214

ABSTRACT

In insects, vision is crucial in finding host plants, but its role in nocturnal insects is largely unknown. Vision involves responses to specific spectra of photon wavelengths and opsins plays an important role in this process. Long-wavelength sensitive opsin (LW opsin) and blue-sensitive opsin (BL opsin) are main visual opsin proteins and play important in behavior regulation.We used CRISPR/Cas9 technology to mutate the long-wavelength-sensitive and blue wavelength-sensitive genes and explored the role of vision in the nocturnal invasive pest Tuta absoluta. Light wave experiments revealed that LW2(-/-) and BL(-/-) mutants showed abnormal wavelength tropism. Both LW2 and BL mutations affected the preference of T. absoluta for the green environment. Mutations in LW2 and BL are necessary to inhibit visual attraction. The elimination of LW2 and BL affected the preference of leaf moths for green plants, and mutations in both induced a preference in moths for white plants. Behavioral changes resulting from LW2(-/-) and BL(-/-) mutants were not affected by sense of smell, further supporting the regulatory role of vision in insect behavior. To the best of our knowledge, this is the first study to reveal that vision, not smell, plays an important role in the host-seeking behavior of nocturnal insects at night, of which LW2 and BL opsins are key regulatory factors. These study findings will drive the development of the "vision-ecology" theory.


Subject(s)
Color Vision , Moths , Animals , Opsins/genetics , Opsins/metabolism , Introduced Species , Moths/genetics , Moths/metabolism , Insecta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...