Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Biosens Bioelectron ; 259: 116371, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38761742

ABSTRACT

The work was based on N-(4-Aminobutyl)-N-ethylisoluminol (ABEI)-functionalized Fe-MIL-101 and gold nanoparticles (AuNPs) as sensing materials, and an electrochemiluminescence (ECL) aptasensor was constructed for detecting acetamiprid. As a metal-organic framework (MOF) material, Fe-MIL-101, was renowned for its unique three-dimensional network structure and efficient catalytic capability. ABEI, a common ECL reagent, was widely applied. ABEI was introduced into the Fe-MIL-101 structure as a luminescence functionalization reagent to form Fe-MIL-101@ABEI. This approach avoided limitations on the loading capacity of luminescent reagents imposed by modification and encapsulation methods. With character of excellent catalytic activity and ease of bioconjugation, AuNPs offered significant advantages in biosensing. Leveraging the reductive properties of ABEI, AuNPs were reduced around Fe-MIL-101@ABEI, resulting in the modified luminescent functionalized material denoted as Fe-MIL-101@ABEI@AuNPs. An aptamer was employed as a recognition element and was modified accordingly. The aptamer was immobilized on Fe-MIL-101@ABEI@AuNPs through gold-sulfur (Au-S) bonds. After capturing acetamiprid, the aptamer induced a decrease in the ECL signal intensity within the ABEI-hydrogen peroxide (H2O2) system, enabling the quantitative detection of acetamiprid. The aptasensor displayed remarkable stability and repeatability, featured a detection range of 1×10-3-1×102 nM, and had a limit of detection (LOD) of 0.3 pM (S/N=3), which underscored its substantial practical application potential.

2.
Talanta ; 269: 125471, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38061203

ABSTRACT

Gold nanoparticles (AuNPs)@N-(4-aminobutyl)-N-ethylisoluminol (ABEI)@Titanium dioxide nanorods (TiO2NRs) were used as sensing materials to produce a unique encapsulated nanostructure aptasensor for the detection of acetamiprid residues in this work. ABEI, an analog of luminol, was extensively used as an electrochemiluminescence (ECL) reagent. The ECL mechanism of ABEI- hydrogen peroxide (H2O2) system had connections to a number of oxygen-centered free radicals. TiO2NRs improved ECL response with high electron transfer and a specific surface area. AuNPs were easy to biolabel and could catalyze H2O2 to enhance ECL signal. AuNPs were wrapped around TiO2NRs by utilizing the reduction property of ABEI to form wrapped modified nanomaterials. The sulfhydryl-modified aptamer bound to the nanomaterial by forming gold-sulfur (Au-S) bonds. The aptamer selectively bound to its target with the addition of acetamiprid, which caused a considerable decrease in ECL intensity and enabled quantitative detection of acetamiprid. The aptasensor showed good stability, repeatability and specificity with a broad detection range (1×10-2-1×103 nM) and a lower limit of detection (3 pM) for acetamiprid residues in vegetables. Overall, this aptasensor presents a simple and highly sensitive method for ECL detecting acetamiprid, with potential applications in vegetable safety monitoring.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Nanotubes , Gold/chemistry , Vegetables , Metal Nanoparticles/chemistry , Limit of Detection , Hydrogen Peroxide/chemistry , Luminescent Measurements/methods , Biosensing Techniques/methods , Luminol/chemistry , Aptamers, Nucleotide/chemistry , Electrochemical Techniques/methods
3.
Anal Chim Acta ; 1280: 341842, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37858545

ABSTRACT

In this work, a portable multichannel detection instrument based on time-resolved fluorescence immunochromatographic test strip (TRFIS) was proposed for on-site detecting pesticide residues in vegetables. Its hardware consisted of a silicon photodiode and excitation light source array, a mainboard of the lower machine with STMicroelectronics 32 (STM32) and a linear stepping motor. While detecting, cardboard with 6-channel TRFIS was pulled into the cassette by the stepping motor. The peak area of the test (T) line and control (C) line of each TRFIS was sampled and calculated by software, then the concentration of the detected pesticide was obtained according to the ratio of the T to C value. This instrument could sample 6-channel TRFIS within 30 s simultaneously, and it exhibited excellent accuracy with a 2.5% average coefficient of variation for each channel (n = 12). In addition, the TRFIS was constructed by using europium oxide time-resolved fluorescent microspheres to label the monoclonal antibody against acetamiprid and form a fluorescent probe, which was fixed on the binding pad. The TRFIS was used for the detection of acetamiprid in celery cabbage, cauliflower and baby cabbage. This instrument was used to complete the qualitative and quantitative analysis of the TRFIS, so as to enhance the practical application of the detection method. This TRFIS possessed excellent linearity ranging from 0.25 mg kg-1 to 1.75 mg kg-1 for the detection of acetamiprid, and the limit of detection were 0.056-0.074 mg kg-1 in the different vegetable matrix. The platform combines the accuracy and portability of traditional test strips with the highly sensitive and efficient fluorescence intensity recognition function of detection equipment, which shows a great application prospect of multi-channel rapid detection of small molecule pollutants in the field.


Subject(s)
Pesticide Residues , Pesticide Residues/analysis , Vegetables , Fluorescence , Antibodies, Monoclonal , Microspheres , Limit of Detection , Chromatography, Affinity/methods
4.
Talanta ; 265: 124843, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37399648

ABSTRACT

In order to achieve a highly sensitive detection of procymidone in vegetables, three paper-based biosensors based on a core biological immune scaffold (CBIS) were developed, which were time-resolved fluorescence immunochromatography strips with Europium (III) oxide (Eu-TRFICS). Goat anti-mouse IgG and europium oxide time-resolved fluorescent microspheres formed secondary fluorescent probes. CBIS was formed by secondary fluorescent probes and procymidone monoclonal antibody (PCM-Ab). The first type of Eu-TRFICS (Eu-TRFICS-(1)) fixed secondary fluorescent probes on a conjugate pad, and PCM-Ab was mixed with a sample solution. The second type of Eu-TRFICS (Eu-TRFICS-(2)) fixed CBIS on the conjugate pad. The third type of Eu-TRFICS (Eu-TRFICS-(3)) was directly mixed CBIS with the sample solution. They solved the problems of steric hindrance of antibody labeling, insufficient exposure of antigen recognition region and easy loss of activity in traditional methods. They realized multi-dimensional labeling and directional coupling. They replaced the loss of antibody activity. And the three types of Eu-TRFICS were compared, among which Eu-TRFICS-(1) was the best detection choice. Antibody usage was reduced by 25% and sensitivity was increased by 3 times. Its detection range was 1-800 ng/mL, the limit of detection (LOD) was 0.12 ng/mL with the visible LOD (vLOD) of 5 ng/mL.

5.
Genes (Basel) ; 14(7)2023 07 16.
Article in English | MEDLINE | ID: mdl-37510357

ABSTRACT

Some species of the Hyrcanus group are vectors of malaria in China. However, the member species are difficult to identify accurately by morphology. The development of sequencing technologies offers the possibility of further studies based on the complete mitochondrial genome. In this study, samples of mosquitoes of the Hyrcanus group were collected in China between 1997 and 2015. The mitochondrial genomes of ten species of the Hyrcanus group were analyzed, including the structure and base composition, codon usage, secondary structure of tRNA, and base difference sites in protein coding regions. Phylogenetic analyses using maximum-likelihood and Bayesian inference were performed based on mitochondrial genes and complete mitochondrial genomes The mitochondrial genome of 10 Hyrcanus group members ranged from 15,403 bp to 15,475 bp, with an average 78.23% (A + T) content, comprising of 13 PCGs (protein coding genes), 22 tRNAs, and 2 rRNAs. Site differences between some closely related species in the PCGs were small. There were only 36 variable sites between Anopheles sinensis and Anopheles belenrae for a variation ratio of 0.32% in all PCGs. The pairwise interspecies distance based on 13 PCGs was low, with an average of 0.04. A phylogenetic tree constructed with the 13 PCGs was consistent with the known evolutionary relationships. Some phylogenetic trees constructed by single coding regions (such as COI or ND4) or combined coding regions (COI + ND2 + ND4 + ND5 or ND2 + ND4) were consistent with the phylogenetic tree constructed using the 13 PCGs. The phylogenetic trees constructed using some coding genes (COII, ND5, tRNAs, 12S rRNA, and 16S rRNA) differed from the phylogenetic tree constructed using PCGs. The difference in mitochondrial genome sequences between An. sinensis and An. belenrae was very small, corresponding to intraspecies difference, suggesting that the species was in the process of differentiation. The combination of all 13 PCG sequences was demonstrated to be optimal for phylogenetic analysis in closely related species.


Subject(s)
Anopheles , Genome, Mitochondrial , Animals , Anopheles/genetics , Phylogeny , Genome, Mitochondrial/genetics , RNA, Ribosomal, 16S , Bayes Theorem , Mosquito Vectors/genetics , China
6.
PLoS Negl Trop Dis ; 17(6): e0011399, 2023 06.
Article in English | MEDLINE | ID: mdl-37267343

ABSTRACT

BACKGROUND: Dengue fever is an infectious disease that is imported into Shanghai, China and requires prevention and control measures. Controlling the vector Aedes albopictus through insecticide use is a key approach to dengue control. However, the rapid evolution of insecticide resistance in Ae. albopictus has raised concerns about the failure of dengue control efforts. Knockdown resistance (kdr) caused by point mutations in the voltage-gated sodium channel (VGSC) gene is a primary mechanism of pyrethroid resistance. In this study, we investigated the kdr mutations of Ae. albopictus in Shanghai and evaluated the trend in its evolution. METHODOLOGY/PRINCIPAL FINDINGS: We collected 17 populations of Ae. albopictus from 15 districts in Shanghai in 2020, extracted genomic DNA from individual mosquitoes, and amplified Domain II, III, and IV in VGSC using PCR. Following sequencing, we obtained 658 VGSC sequences. We detected the nonsynonymous mutations V1016G, I1532T, and F1534S/C/I, among which V1016G and F1534C/I were reported in Shanghai for the first time and F1534I was a novel mutant allele in Ae. albopictus. The overall mutation frequency was 84.65%, with individual mutation frequencies ranging from 46.81% to 100%, excluding the Fengxian District population, which had a frequency of 0%. The V1016G and I1532T mutation types accounted for 7.14% and 3.42%, respectively. The mutant allele at codon 1534 accounted for 63.98% of all mutations, including TCC/S (62.77%), TGC/C (1.06%), and ATC/I (0.15%). We identified and classified five intron types in Domain III by length, including A (83 bp, 12.07%), B (68 bp, 87.30%), C (80 bp, 0.16%), D (72 bp, 0.16%), and E (70 bp, 0.31%). Individuals with intron B had a significant mutation tendency at codon 1534 relative to intron A (chi-square test, p < 0.0001). We found no correlation between mutation frequency and the amount of pyrethroid used (Pearson correlation, p = 0.4755). CONCLUSIONS/SIGNIFICANCE: In recent years, kdr mutations in the Ae. albopictus population in Shanghai have rapidly evolved, as evidenced by an increase in mutation types and significantly increased mutation frequency. The F1534I/ATC mutant allele was found to be a novel mutation, F1534C/TGC was reported for the first time in Shanghai, and intron B in Domain III was significantly associated with mutation frequency at codon 1534. Continuous monitoring of resistance changes and strict regulation of insecticide use are required.


Subject(s)
Aedes , Dengue , Insecticides , Pyrethrins , Voltage-Gated Sodium Channels , Animals , Humans , Insecticides/pharmacology , Aedes/genetics , Insecticide Resistance/genetics , China , Pyrethrins/pharmacology , Mutation , Voltage-Gated Sodium Channels/genetics , Dengue/prevention & control , Mosquito Vectors/genetics
7.
Infect Dis Poverty ; 12(1): 46, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37147696

ABSTRACT

BACKGROUND: Mosquito control is needed to prevent dengue fever, which is mainly spread by Aedes albopictus in China. Application of insecticides is one of the main mosquito control methods; however, this approach can fail due to the knockdown resistance (kdr) gene mutation that causes decreased sensitivity to insecticides in Ae. albopictus. The kdr mutation patterns among different regions in China differ significantly. However, the underlying mechanism and factors that influence kdr mutation remain unclear. To explore the potential influence of genetic background on the development of insecticide resistance in Ae. albopictus, we analyzed the genetic structure of Ae. albopictus populations in China and its correlation with major kdr mutations. METHODS: We collected Ae. albopictus from 17 sites in 11 provinces (municipalities) across China from 2016 to 2021 and extracted the genomic DNA from individual adult mosquitoes. We selected eight microsatellite loci for genotyping, and based on microsatellite scores, we estimated intraspecific genetic diversity, population structure, and effective population size. The association between the intrapopulation genetic variation and F1534 mutation rate was evaluated by the Pearson correlation coefficient. RESULTS: Based on variation analysis of the microsatellite loci of 453 mosquitoes representing 17 populations throughout China, more than 90% of the variation occurred within individuals, whereas only about 9% of the variation occurred among populations, indicating that field populations of Ae. albopictus are highly polymorphic. The northern populations tended to belong to gene pool I (BJFT 60.4%, SXXA 58.4%, SDJN 56.1%, SXYC 46.8%), the eastern populations tended to belong to pool III (SH 49.5%, JZHZ 48.1%), and the southern populations tended to belong to three different gene pools. Moreover, we observed that the greater the fixation index (FST), the lower the wild-type frequency of F1534 of VSGC. CONCLUSIONS: The degree of genetic differentiation among Ae. albopictus populations in China was low. These populations were divided into three gene pools, in which the northern and eastern pools are relatively homogeneous, while the southern gene pool is heterogeneous. The possible correlation between its genetic variations and kdr mutations is also noteworthy.


Subject(s)
Aedes , Insecticides , Pyrethrins , Humans , Animals , Insecticides/pharmacology , Mutation , China , Insecticide Resistance/genetics , Genetic Structures
8.
Food Chem ; 424: 136441, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37244182

ABSTRACT

Aflatoxin contamination in peanut kernels seriously harms the health of humans and causes significant economic losses. Rapid and accurate detection of aflatoxin is necessary to minimize its contamination. However, current detection methods are time-consuming, expensive and destructive to samples. Therefore, short-wave infrared (SWIR) hyperspectral imaging coupled with multivariate statistical analysis was used to investigate the spatio-temporal distribution patterns of aflatoxin, and quantitatively detect the aflatoxin B1 (AFB1) and total aflatoxin in peanut kernels. In addition, Aspergillus flavus contamination was identified to prevent the production of aflatoxin. The result of validation set demonstrated that SWIR hyperspectral imaging could predict the contents of the AFB1 and total aflatoxin accurately, with residual prediction deviation values of 2.7959 and 2.7274, and limits of detection of 29.3722 and 45.7429 µg/kg, respectively. This study presents a novel method for the quantitative detection of aflatoxin and offers an early warning system for its potential application.


Subject(s)
Aflatoxins , Humans , Aflatoxins/analysis , Aflatoxin B1/analysis , Arachis , Hyperspectral Imaging , Food Contamination/analysis , Aspergillus flavus
9.
Sci Total Environ ; 868: 161692, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36682560

ABSTRACT

In the work, based on self-assembly dual-site DNA tetrahedral scaffold (DTS), thionine (Thi), and 6-(Ferrocenyl)hexanethiol (Fc6S), a multiplex strategy electrochemical platform was fabricated for the simultaneous detection of profenofos (PFF) and diazinon (DZN). Thi and Fc6S were used to label aptamers for the synthesis of probes respectively. Notably, Thi and Fc6S engendered recognizable DPV peaks at different potentials to achieve simultaneous detection of PFF and DZN. In addition to increasing the conductivity of the electrode, the combination of carboxylic acid functionalized multi-walled carbon nanotubes and ferroferric oxide nanoparticles could also increase its higher specific surface area of the electrode interface to adsorb more DTS. Because of the mechanical rigidity of the DTS, the DTS could keep a complementary chain upright and provide more binding sites for aptamers, the binding efficiency between the complementary chain and 2 binding aptamers could be improved. Comparing the aptasensors performance of single-strand DNA with that of the DTS with complementary strands, the benefits of the DTS were highlighted in this system. Under optimal conditions, the detection limits of PFF and DZN were both 3.33 pg/mL and the detection ranges were both 1.00 × 101-1.00 × 107 pg/mL. Meanwhile, the recoveries of PFF and DZN were 87.15%-117.34% and 91.20%-114.19%, respectively. The aptasensor could realize the simultaneous detection of PFF and DZN in vegetables. Furthermore, the aptasensor also had good stability and selectivity. This strategy could provide a good reference for developing effective aptasensors for the simultaneous detection of other small molecules and toxins.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Nanotubes, Carbon , Diazinon , Electrochemical Techniques , Nanotubes, Carbon/chemistry , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , DNA , Limit of Detection , Gold/chemistry
10.
Acta Trop ; 238: 106798, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36529191

ABSTRACT

The accurate identification of sandfly species is crucial because some species transmit medically significant diseases, including leishmaniasis, bartonellosis and sandfly fever. However, due to the high similarity of the external morphology in sandfly species, identification can only be performed using internal morphological characteristics after dissection, which is time consuming and requires highly experienced staff. Thus, the introduction of suitable molecular markers may solve these identification problems. This study screened suitable DNA barcodes to identify common sandfly species in China. The phlebotomine sandflies were collected from Sichuan, Henan and Hainan Provinces from 2014 to 2016. The species were identified by the morphological characteristics of the pharyngeal armature and spermatheca. The genomic DNA of sandfly was extracted individually, and mitochondrial DNA (mtDNA) cytochrome C oxidase subunit I (COI) and cytochrome B (Cytb) as well as the 18S subunit of ribosomal DNA (rDNA) were amplified using polymerase chain reaction (PCR). Additionally, intraspecific and interspecific differences (p-distance) were calculated to evaluate the feasibility of the three gene fragments as a DNA barcode. The phylogeny trees of all sandfly species in this study were constructed using neighbor joining (NJ) method. Six species were identified by the morphological features, belonging to Phlebotomus and Sergentomyia, as Ph. chinensis s. l., Ph. stantoni, Se. bailyi, Se. iyengari, Se. squamirostris, and Se. squamipleuris. Analysis based on three gene fragments revealed some degree of intraspecific polymorphism among these sandfly species in China. The largest intraspecific variation occurred in Ph. chinensis s. l. (mtDNA COI, p-distance = 0.042; mtDNA Cytb, p-distance = 0.071), but the 18S rDNA fragment showed a small variation (p-distance = 0.005). The ranges of interspecific p-distances for mtDNA COI and mtDNA Cytb were 0.138 - 0.231 and 0.128 - 0.274, respectively. However, the interspecific p-distances of 18S rDNA are relatively low ranging from 0.003 to 0.055. Both mitochondrial COI and Cytb gene fragments are valid molecular identification markers in theses sandfly species. The topological structure of phylogeny trees based on mtDNA COI, mtDNA Cytb and 18S rDNA genes were all consistent with morphological classification. And we also found there were significant intraspecies differences within Ph. chinensis s. l. (0.006-0.071) and Se. bailyi (0.002-0.032) based on mtDNA Cytb gene fragment. Sequence alignment data suggested that Ph. chinensis s. l. from Sichuan should be Ph. sichuanensis, and the sandfly specimen collected from Henan was Ph. chinensis s. s.. There could be cryptic species in Se. bailyi from China.


Subject(s)
Phlebotomus , Psychodidae , Animals , China , Cytochromes b/genetics , DNA Barcoding, Taxonomic/methods , DNA, Mitochondrial/genetics , DNA, Ribosomal/genetics , Phylogeny , Psychodidae/genetics
11.
Bioelectrochemistry ; 148: 108227, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35973324

ABSTRACT

In this work, an interference-resistant electrochemical aptasensor that could detect profenofos in vegetables was constructed based on complexes of graphene oxide and polyaniline (GO@PANI) and gold nanoparticles-tetrahedral DNA nanostructure (Au-TDN). Compared with a single chain aptamer, the tetrahedral DNA nanostructure is highly stable and allows the aptamer on this structure to stand in a highly ordered position on an electrode surface. Moreover, the AuNPs are biocompatible and can protect the activity of the aptamer, which can improve the assembly success rate of Au-TDN. Besides, the conductivity of PANI had been tremendously enhanced thanks to the existence of GO, which improved the dispersion of PANI. The GO@PANI was prepared by a chemical synthesis method, which had a large surface area and was able to adsorb many Au-TDN. Under optimal working parameters, the constructed aptasensor exhibited good electrochemical sensing performance with a detection limit of 10.50 pg/mL and a linear range of 1.0 × 102-1.0 × 107 pg/mL. In addition, it was employed in detecting profenofos in vegetables with a good recovery rate of 90.41-116.37 %. More importantly, the aptasensor also has excellent stability and high selectivity. This study provides a promising method to avoid interference in the detection of profenofos by sensors.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nanostructures , Aniline Compounds , Biosensing Techniques/methods , DNA/chemistry , Electrochemical Techniques/methods , Gold/chemistry , Graphite , Metal Nanoparticles/chemistry , Organothiophosphates
12.
Anal Methods ; 14(10): 1051-1059, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35195143

ABSTRACT

The massive use of organophosphorus pesticides (OPs) poses a great threat to food safety, human health and environmental protection. As there are many kinds of pesticides, their detection is facing a severe challenge. The simultaneous detection of multiple organophosphorus pesticides in one test is a problem to be solved at present. In this paper, a time-resolved fluorescent immunochromatographic (TRFIA) strip is prepared by using broad-specificity antibodies (Abs) of OPs as the recognition element. Abs were connected to europium oxide latex microspheres using sheep anti-mouse antibodies (SaMIgG) to form an indirect probe. This strategy could effectively realize signal amplification, and could save the amount and protect the activity of Abs. After the detection, the color change of the test line (T-line) was observed to make qualitative judgment under UV-light (365 nm). Then, the images of the positive sample were analyzed by using ImageJ to complete the quantitative detection. Under optimal construction and operating conditions, the limit of detection of the strip could reach 0.53 ng g-1. And the TRFIA strip performed well in the additive test of vegetable samples. It is inexpensive to prepare, convenient to carry, and easy to operate. More importantly, it improves the detection efficiency and meets the needs of rapid field testing of a large number of samples.


Subject(s)
Pesticides , Animals , Antibodies/chemistry , Chromatography, Affinity , Mice , Organophosphorus Compounds/analysis , Organophosphorus Compounds/chemistry , Pesticides/analysis , Sheep , Vegetables/chemistry
13.
Analyst ; 147(4): 712-721, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35080213

ABSTRACT

In this work, a new type of Au-tetrahedral DNA nanostructure (Au-TDN) was originally proposed and successfully applied in an electrochemiluminescence aptasensor to detect organophosphorus pesticides (Ops). The aptamers modified with -SH could be covalently bonded with gold nanoparticles (AuNPs) to form a tetrahedron structure, and there were independent probes at each vertex of the tetrahedron, which could increase the probability of specific binding with Ops. The originally designed structure could not only maintain a stable tetrahedral configuration, but also combined with the target to improve the sensitivity of the sensor. Meanwhile, silver nanoparticles (AgNPs) could catalyze the chemical reaction between luminol and H2O2 to generate a variety of intermediates called reactive oxygen species (ROS) for signal enhancement. Factors that had important influences on the aptasensor, such as the concentration of Au-TDN, the incubation time, and the pH value of the buffer, were optimized in this trial. According to the final results, the limit of detection (LOD) of 3 pg mL-1 (S/N = 3) for methyl parathion, the LOD of 0.3 pg mL-1 (S/N = 3) for parathion and the LOD of 0.03 pg mL-1 (S/N = 3) for phoxim were obtained, respectively. Moreover, the novel tetrahedral structure could be replaced by different types of aptamers to expand its application range and lay a foundation for the development of portable rapid detection devices for pesticide residues.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Nanostructures , Pesticides , DNA , Electrochemical Techniques , Gold , Hydrogen Peroxide , Limit of Detection , Luminol , Organophosphorus Compounds , Silver
14.
Biosens Bioelectron ; 193: 113627, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34534889

ABSTRACT

Over the past decades, due to the desire for artificial umami flavors, apparatuses for detecting the umami taste have constantly been developed. Nevertheless, most information on umami is still acquired through human sensory assessment, which makes it difficult to establish an umami standard or quantify the umami flavor. In this study, the ligand binding domain called venus flytrap (VFT) domain of the umami taste receptor protein T1R1 was used as a recognition element, and an electrochemical biosensor based on a double-signal amplification strategy was constructed using single-walled carbon nanotubes (SWCNTs) and Prussian blue (PB). Moreover, the umami taste of four representative umami substances, inosine-5'-monophosphate (IMP), monosodium L-glutamate (MSG), beefy meaty peptide (BMP), and sodium succinate (WSA), were successfully quantitatively measured using differential pulse voltammetry (DPV) at an electrochemical workstation. Based on an equation (S/N = 3), the low detection limits (LODs) of IMP, MSG, BMP, and WSA were 0.1, 0.1, 0.1, and 0.01 pM, respectively. Meanwhile, a normalized signal intensity of more than 90% was kept for 4 days. The results showed that the biosensor could be used to detect umami substances with high sensitivity and selectivity, and was shown to have human-like performance. To develop the T1R1-VFT biosensor using the above-mentioned method, we utilized the ligand binding domain of the human umami receptor, rather than the entire umami receptor protein, which had a complex structure, having the following advantages: volume reduction, simplicity, and stability. This method has great potential for the detection of umami tastes, instead of using sensory evaluation, and for the development of new artificial flavorings.


Subject(s)
Biosensing Techniques , Droseraceae , Nanotubes, Carbon , Electroplating , Ferrocyanides , Humans , Ligands , Receptors, G-Protein-Coupled/genetics
15.
Parasit Vectors ; 14(1): 406, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34399821

ABSTRACT

BACKGROUND: Aedes albopictus is the primary vector of dengue fever in China. This mosquito species has a wide distribution range in China and can be found in the tropical climate zones of southern provinces through to temperate climate zones of northern provinces. Insecticides are an important control method, especially during outbreaks of dengue fever, but increasing insecticide resistance raises the risk of failure to control vector-borne diseases. Knockdown resistance (kdr) caused by point mutations in the voltage-gated sodium channel (VGSC) gene is a key mechanism that confers resistance to pyrethroids. In this study we explored the characteristics and possible evolutionary trend of kdr mutation in Ae. albopictus based on analysis of the kdr mutations in field populations of mosquitoes in China. METHODS: A total of 1549 adult Ae. albopictus were collected from 18 sites in China from 2017 to 2019 and 50 individuals from three sites in the 1990s. A fragment of approximately 350 bp from part of the S6 segment in the VGSC gene domain III was amplified and sequenced. Using TCS software version 1.21A, we constructed haplotypes of the VGSC gene network and calculated outgroup probability of the haplotypes. Data of annual average temperatures (AAT) of the collection sites were acquired from the national database. The correlation between AAT of the collection site and the kdr mutation rate was analyzed by Pearson correlation using SPSS software version 21.0. RESULTS: The overall frequency of mutant allele F1534 was 45.6%. Nine mutant alleles were detected at codon 1534 in 15 field populations, namely TCC/TCG (S) (38.9%), TTG/CTG/CTC/TTA (L) (3.7%), TGC (C) (2.9%), CGC (R) (0.3%) and TGG (W) (0.1%). Only one mutant allele, ACC (T), was found at codon 1532, with a frequency of 6.4% in ten field populations. Moreover, multiple mutations at alleles I1532 and F1534 in a sample appeared in five populations. The 1534 mutation rate was significantly positively related to AAT (Pearson correlation: r(18) = 0.624, P = 0.0056), while the 1532 mutation rate was significantly negatively related to AAT (Pearson correlation: r(18) = - 0.645, P = 0.0038). Thirteen haplotypes were inferred, in which six mutant haplotypes were formed by one step, and one additional mutation formed the other six haplotypes. In the samples from the 1990s, no mutant allele was detected at codon 1532 of the VGSC gene. However, F1534S/TCC was found in HNHK94 with an unexpected frequency of 100%. CONCLUSIONS: Kdr mutations are widespread in the field populations of Ae. albopictus in China. Two novel mutant alleles, F1534W/TGG and F1534R/CGC, were detected in this study. The 1534 kdr mutation appeared in the population of Ae. albopictus no later than the 1990s. The F1534 mutation rate was positively correlated with AAT, while the I1532 mutation rate was negatively correlated with AAT. These results indicate that iInsecticide usage should be carefully managed to slow down the spread of highly resistant Ae. albopictus populations, especially in the areas with higher AAT.


Subject(s)
Aedes/genetics , Insect Proteins/genetics , Insecticide Resistance/genetics , Mutation , Temperature , Voltage-Gated Sodium Channels/genetics , Aedes/drug effects , Alleles , Animals , China , Gene Knockdown Techniques , Insecticides/pharmacology
16.
J Hazard Mater ; 401: 123794, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33113737

ABSTRACT

In this work, an ultrasensitive and selective electrochemiluminescence (ECL) aptasensor with Au-tetrahedral aptamer nanostructure (Au-TAN) for acetamiprid detection was developed, which employed luminescence property of luminol and hydrogen peroxide (H2O2) as a co-reactant to apply the prepared Au-TAN to the luminescence systems. Au-TAN was prepared to modify an electrode surface via an Au-S bond to form a stable tetrahedral nanostructure. Fixed on the surface of the working electrode, Au-TAN could not only enhance the function of the aptamer but also boost the sensing performance. At the same time, Au nanoparticles (AuNPs) of the Au-TAN could also catalyze H2O2, thereby enhancing the luminescence performance of this aptasensor. The pH of the buffer solution, the concentration of H2O2 and the concentration of Au-TAN were optimized. Under the optimal conditions, the aptasensor had a detection limit of 0.0576 pM (S/N = 3), which was lower than those of other aptasensors for acetamiprid detection. Moreover, the weak alkaline environment explored in the experiment could expand its application range. Above all, the proposed method presented a high accuracy and sensitivity.

17.
Bioprocess Biosyst Eng ; 44(3): 585-594, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33161490

ABSTRACT

Broad-spectrum antibodies can effectively recognize substances with similar structures and have broad application prospects in field rapid detection. In this study, broad-spectrum antibodies (Abs) against organophosphorus pesticides (OPs) were used as sensitive recognition elements, which could effectively recognize most OPs. Gold nanoparticles (AuNPs) have good biocompatibility. It combined with Abs to form a gold-labeled probe (AuNPs-Abs), which enhances the effective binding of antibodies to nanomaterials. Prussian blue (PB) was added to electrodeposition solution to enhance the conductivity, resulting in superior electrochemical performance. The AuNP-Abs-PB composite film was prepared by electrodeposition on the electrode surface to improve the anti-interference ability and stability of the immunosensor. Under the optimal experimental conditions, the immunosensor had a wide detection range (IC20-IC80: 1.82 × 10-3-3.29 × 104 ng/mL) and high sensitivity. Most importantly, it was simple to be prepared and could be used to detect multiple OPs.


Subject(s)
Antibodies/chemistry , Electrochemical Techniques , Ferrocyanides/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Organophosphorus Compounds/analysis , Pesticides/analysis , Immunoassay
18.
Sensors (Basel) ; 20(22)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33217912

ABSTRACT

Immunoassay has the advantages of high sensitivity, high specificity, and simple operation, and has been widely used in the detection of mycotoxins. For several years, time-resolved fluorescence immunochromatography (TRFIA) paper-based sensors have attracted much attention as a simple and low-cost field detection technology. However, a traditional TRFIA paper-based sensor is based on antibody labeling, which cannot easily meet the current detection requirements. A second antibody labeling method was used to amplify the fluorescence signal and improve the detection sensitivity. Polystyrene fluorescent microspheres were combined with sheep anti-mouse IgG to prepare fluorescent probes (Eu-IgGs). After the probe fully reacted with the antibody (Eu-IgGs-Abs) in the sample cell, it was deployed on the paper-based sensor using chromatography. Eu-IgGs-Abs that were not bound to the target were captured on the T-line, while those that were bound were captured on the C-line. The paper-based sensor reflected the corresponding fluorescence intensity change. Because a single molecule of the deoxynivalenol antibody could bind to multiple Eu-IgGs, this method could amplify the fluorescence signal intensity on the unit antibody and improve the detection sensitivity. The working standard curve of the sensor was established under the optimum working conditions. It showed the lower limit of detection and higher recovery rate when it was applied to actual samples and compared with other methods. This sensor has the advantages of high sensitivity, good accuracy, and good specificity, saving the amount of antibody consumed and being suitable for rapid field detection of deoxynivalenol.


Subject(s)
Antibodies , Chromatography, Affinity , Immunoassay , Trichothecenes/analysis , Fluorescent Dyes
19.
Sci Total Environ ; 712: 136410, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32050375

ABSTRACT

In order to solve the problem that the sensor cannot be reused due to the passivation of the electrode surface, a refreshable electrochemical aptasensor based on a hydrophobic electrode and a magnetic nanocomposite had been developed. Therein, the hydrophobic electrode was formed by modifying a screen-printed carbon electrode (SPCE) with polydimethylsiloxane (PDMS), which could avoid adsorption of molecules on the electrode surface due to its hydrophobicity. Combined with aptamer (Apt), the synthesized graphene oxide-ferroferric oxide (GO-Fe3O4) was used as a magnetic catcher to capture specific organophosphorus pesticides (OPs), which could be removed to the working area of SPCE with a magnet for electrochemical detection. The performance analysis of hydrophobic electrode showed that the SPCE could be used twice. When the electrochemical signals of Apt/GO-Fe3O4 and OPs/Apt/GO-Fe3O4 were recorded using the same SPCE, the current differences between them were directly related to the concentrations of OPs. Through the contrast test between the spiked vegetable samples and the OPs standard solutions, it was found that the OPs concentrations could be qualitatively evaluated by comparing the current differences. At the same time, the characteristic of collecting target with magnetic catcher was helpful for detecting OPs with a low concentration. Therefore, the refreshable aptasensor provided a huge potential to small molecule target evaluation.

SELECTION OF CITATIONS
SEARCH DETAIL
...