Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Biomech Eng ; : 1-26, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225677

ABSTRACT

Background Ascending thoracic aortic aneurysms (aTAA) can lead to life-threatening dissection and rupture. Recent studies highlighted aTAA mechanical properties as relevant factors associated with progression. The aim of this study was to quantify in vivo aortic wall stretch in healthy participants and aTAA patients using displacement encoding with stimulated echoes (DENSE) MRI. Moreover, aTAA wall stretch between surgical and non-surgical patients were investigated. Finally, DENSE measurements were compared to reference-standard mechanical testing on aTAA specimens from surgical repairs. Methods In total, 18 subjects were recruited, six healthy participants and 12 aTAA patients, for this prospective study. ECG-gated DENSE imaging was performed to measure systole-diastole wall stretch, as well as the ratio of aTAA stretch to unaffected descending thoracic aorta stretch. Free-breathing and breath-held DENSE protocols were used. Uniaxial tensile testing-measured indices were correlated to DENSE measurements in five specimens. Results In vivo aortic wall stretch was significantly lower in aTAA compared to healthy subjects (P=.0004). There was no correlation between stretch and maximum aTAA diameter. The ratio of aTAA to unaffected thoracic aorta wall stretch was significantly lower in surgical candidates compared to non-surgical candidates (P=.0442). Finally, in vivo aTAA wall stretch correlated to wall failure stress and peak modulus of the intima (P=.017 and P=.034, respectively), while the stretch ratio correlated to whole-wall thickness failure stretch and stress (P=.013 and P=.040, respectively). Conclusion Aortic DENSE has the potential to assess differences in aTAA mechanical properties and progressions.

2.
Cell Biochem Biophys ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38961034

ABSTRACT

Triple-negative breast cancer (TNBC) is characterized by a grim prognosis and numerous challenges. The objective of our study was to examine the role of thymidylate synthase (TYMS) in TNBC and its impact on ferroptosis. The expression of TYMS was analyzed in databases, along with its prognostic correlation. TYMS positive expression was identified through immunohistochemistry (IHC), while real-time quantitative PCR (qRTPCR) was employed to measure TYMS mRNA levels in various cell lines. Western blotting was utilized to assess protein expression. Cell proliferation, mobility, apoptosis, and reactive oxygen species (ROS) levels were evaluated using CCK8, wound scratch healing assay, transwell assay, and flow cytometry, respectively. Additionally, a tumor xenograft model was established in BALB/c nude mice for further investigation. Tumor volume and weight were measured, and histopathological analysis using hematoxylin and eosin (H&E) staining was conducted to assess tumor tissue changes. IHC staining was employed to detect the expression of Ki67 in tumor tissues. High expression of TYMS was observed in TNBC and was found to be correlated with poor prognosis in patients. Among various cell lines, TYMS expression was highest in BT549 cells. Knockdown of TYMS resulted in suppression of cell proliferation and mobility, as well as promotion of apoptosis. Furthermore, knockdown of TYMS led to increased accumulation of ROS and Fe2+ levels, along with upregulation of ACLS4 expression and downregulation of glutathione peroxidase 4 (GPX4) expression. In vivo studies showed that knockdown of TYMS inhibited tumor growth. Additionally, knockdown of TYMS was associated with inhibition of mTOR, p-PI3K, and p-Akt expression. Our research showed that the knockdown of TYMS suppressed the TNBC progression by inhibited cells proliferation via ferroptosis. Its underlying mechanism is related to the PI3K /Akt pathway. Our study provides a novel sight for the suppression effect of TYMS on TNBC.

3.
Dalton Trans ; 52(46): 17477-17484, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37953727

ABSTRACT

Interlayer magnetic couplings of low-dimensional magnets have significantly dominated magnetic behavior through skillful regulation of interlayer interacting forces. To identify interaction-force-regulated interlayer magnetic communications, two air-stable Co(II)-based coordination polymers (CPs), a well-isolated layered structure with approximately 12.6 Å interlayer separation and a carboxylate-extended three-dimensional framework with an inter-ribbon distance of 5.8 Å, have been solvothermally fabricated by varying polycarboxylate mediators in a ternary CoII-tetrazolate-carboxylate system. The layered CP with antiparallel-arranged {Co2(COO)2}n chains interconnected only via cyclic tetrazolyl linkages behaves as a spin-canted antiferromagnet with a Néel temperature of 2.6 K, due to strong intralayer antiferromagnetic couplings and negligible interlayer magnetic interactions. In contrast, the compact three-dimensional framework with corner-sharing Δ-ribbons tightly aggregated through µ2-η1:η1-COO- is a field-induced metamagnet from a canted antiferromagnet to a weak ferromagnet with a small critical field of Hc = 90 Oe. Apparently, these interesting magnetic responses reveal the importance of an interacting force from the magnetic subunits for the magnetic behavior of the molecular magnet, greatly enriching the magnetostructural correlations of transition-metal-based molecular magnets.

4.
Invest Radiol ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37855728

ABSTRACT

BACKGROUND: Management of asymptomatic abdominal aortic aneurysm (AAA) based on maximum aneurysm diameter and growth rate fails to preempt many ruptures. Assessment of aortic wall biomechanical properties may improve assessment of progression and rupture risk. This study aimed to assess the accuracy of AAA wall strain measured by cine magnetic resonance imaging (MRI) deformable image registration (MR strain) and investigate its relationship with recent AAA progression. METHODS: The MR strain accuracy was evaluated in silico against ground truth strain in 54 synthetic MRIs generated from a finite element model simulation of an AAA patient's abdomen for different aortic pulse pressures, tissue motions, signal intensity variations, and image noise. Evaluation included bias with 95% confidence interval (CI) and correlation analysis. Association of MR strain with AAA growth rate was assessed in 25 consecutive patients with >6 months of prior surveillance, for whom cine balanced steady-state free-precession imaging was acquired at the level of the AAA as well as the proximal, normal-caliber aorta. Univariate and multivariate regressions were used to associate growth rate with clinical variables, maximum AAA diameter (Dmax), and peak circumferential MR strain through the cardiac cycle. The MR strain interoperator variability was assessed using bias with 95% CI, intraclass correlation coefficient, and coefficient of variation. RESULTS: In silico experiments revealed an MR strain bias of 0.48% ± 0.42% and a slope of correlation to ground truth strain of 0.963. In vivo, AAA MR strain (1.2% ± 0.6%) was highly reproducible (bias ± 95% CI, 0.03% ± 0.31%; intraclass correlation coefficient, 97.8%; coefficient of variation, 7.14%) and was lower than in the nonaneurysmal aorta (2.4% ± 1.7%). Dmax (ß = 0.087) and MR strain (ß= -1.563) were both associated with AAA growth rate. The MR strain remained an independent factor associated with growth rate (ß= -0.904) after controlling for Dmax. CONCLUSIONS: Deformable image registration analysis can accurately measure the circumferential strain of the AAA wall from standard cine MRI and may offer patient-specific insight regarding AAA progression.

5.
J Magn Reson Imaging ; 58(4): 1258-1267, 2023 10.
Article in English | MEDLINE | ID: mdl-36747321

ABSTRACT

BACKGROUND: Abdominal aortic aneurysms (AAAs) may rupture before reaching maximum diameter (Dmax ) thresholds for repair. Aortic wall microvasculature has been associated with elastin content and rupture sites in specimens, but its relation to progression is unknown. PURPOSE: To investigate whether dynamic contrast-enhanced (DCE) MRI of AAA is associated with Dmax or growth. STUDY TYPE: Prospective. POPULATION: A total of 27 male patients with infrarenal AAA (mean age ± standard deviation = 75 ± 5 years) under surveillance with DCE MRI and 2 years of prior follow-up intervals with computed tomography (CT) or MRI. FIELD STRENGTH/SEQUENCE: A 3-T, dynamic three-dimensional (3D) fast gradient-echo stack-of-stars volumetric interpolated breath-hold examination (Star-VIBE). ASSESSMENT: Wall voxels were manually segmented in two consecutive slices at the level of Dmax . We measured slope to 1-minute and area under the curve (AUC) to 1 minute and 4 minutes of the signal intensity change postcontrast relative to that precontrast arrival, and, Ktrans , a measure of microvascular permeability, using the Patlak model. These were averaged over all wall voxels for association to Dmax and growth rate, and, over left/right and anterior/posterior quadrants for testing circumferential homogeneity. Dmax was measured orthogonal to the aortic centerline and growth rate was calculated by linear fit of Dmax measurements. STATISTICAL TESTS: Pearson correlation and linear mixed effects models. A P value <0.05 was considered statistically significant. RESULTS: In 44 DCE MRIs, mean Dmax was 45 ± 7 mm and growth rate in 1.5 ± 0.4 years of prior follow-up was 1.7 ± 1.2 mm per year. DCE measurements correlated with each other (Pearson r = 0.39-0.99) and significantly differed between anterior/posterior versus left/right quadrants. DCE measurements were not significantly associated with Dmax (P = 0.084, 0.289, 0.054 and 0.255 for slope, AUC at 1 minute and 4 minutes, and Ktrans , respectively). Slope and 4 minutes AUC significantly associated with growth rate after controlling for Dmax . CONCLUSION: Contrast uptake may be increased in lateral aspects of the AAA. Contrast enhancement 1-minute slope and 4-minutes AUC may be associated with a period of recent AAA growth that is independent of Dmax . EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 2.


Subject(s)
Aortic Aneurysm, Abdominal , Humans , Male , Prospective Studies , Aortic Aneurysm, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/complications , Aorta , Disease Progression , Magnetic Resonance Imaging/methods
6.
Asian J Pharm Sci ; 17(5): 741-750, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36382308

ABSTRACT

Nanocrystals (NCs), a colloidal dispersion system formulated with stabilizers, have attracted widespread interest due to their ability to effectively improve the oral bioavailability of poorly water-soluble drugs. The stabilizer plays a key role because it can affect the physical stability and even the oral bioavailability of NCs. However, how stabilizers affect the bioavailability of NCs remains unknown. In this study, F68, F127, HPMC, and PVP were each used as a stabilizer to formulate naringenin NCs. The NCs formulated with PVP exhibited excellent release behaviors, cellular uptake, permeability, oral bioavailability, and anti-inflammatory effects. The underlying mechanism is that PVP effectively inhibits the formation of naringenin dimer, which in turn improves the physical stability of the supersaturated solution generated when NC is dissolved. This finding provides insights into the effects of stabilizers on the in vivo performances of NCs and supplies valuable knowledge for the development of poorly water-soluble drugs.

7.
Int J Pharm ; 628: 122298, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36257466

ABSTRACT

Nanocrystals (NCs) have been widely recognized as an available policy for the formulation of long-acting injections for insoluble drugs. Stabilizers are extremely important for the physical stability of NCs because they can reduce the surface free energy of the system. However, whether stabilizers can affect the in vivo performances of long-acting injectable NCs is unclear. In this study, three celecoxib (CXB) NCs formulated with different stabilizers (PVP K17, TPGS, and F68) were successfully developed by the wet milling method. Among the formulations, CXB-NCs/PVP K17 had a lower dissolution rate. More importantly, CXB-NCs/PVP K17 did not show burst release after intramuscular (i.m.) injection to rats, and it had a strong analgesic effect. These results showed that the stabilizers played a key role in the in vivo behaviors of long-acting injectable NCs. This strongly suggested that the burst release could be avoided by alteration of stabilizers of NCs by i.m. injection.


Subject(s)
Nanoparticles , Rats , Animals , Celecoxib , Nanoparticles/chemistry , Excipients , Solubility
8.
Radiology ; 304(3): 721-729, 2022 09.
Article in English | MEDLINE | ID: mdl-35638926

ABSTRACT

Background Abdominal aortic aneurysm (AAA) diameter remains the standard clinical parameter to predict growth and rupture. Studies suggest that using solely AAA diameter for risk stratification is insufficient. Purpose To evaluate the use of aortic MR elastography (MRE)-derived AAA stiffness and stiffness ratio at baseline to identify the potential for future aneurysm rupture or need for surgical repair. Materials and Methods Between August 2013 and March 2019, 72 participants with AAA and 56 healthy participants were enrolled in this prospective study. MRE examinations were performed to estimate AAA stiffness and the stiffness ratio between AAA and its adjacent remote normal aorta. Two Cox proportional hazards models were used to assess AAA stiffness and stiffness ratio for predicting aneurysmal events (subsequent repair, rupture, or diameter >5.0 cm). Log-rank tests were performed to determine a critical stiffness ratio suggesting high-risk AAAs. Baseline AAA stiffness and stiffness ratio were studied using Wilcoxon rank-sum tests between participants with and without aneurysmal events. Spearman correlation was used to investigate the relationship between stiffness and other potential imaging markers. Results Seventy-two participants with AAA (mean age, 71 years ± 9 [SD]; 56 men and 16 women) and 56 healthy participants (mean age, 42 years ± 16; 27 men and 29 women) were evaluated. In healthy participants, aortic stiffness positively correlated with age (ρ = 0.44; P < .001). AAA stiffness (event group [n = 21], 50.3 kPa ± 26.5 [SD]; no-event group [n = 21], 86.9 kPa ± 52.6; P = .01) and the stiffness ratio (event group, 0.7 ± 0.4; no-event group, 2.0 ± 1.4; P < .001) were lower in the event group than the no-event group at a mean follow-up of 449 days. AAA stiffness did not correlate with diameter in the event group (ρ = -0.06; P = .68) or the no-event group (ρ = -0.13; P = .32). AAA stiffness was inversely correlated with intraluminal thrombus area (ρ = -0.50; P = .01). Conclusion Lower abdominal aortic aneurysm stiffness and stiffness ratio measured with use of MR elastography was associated with aneurysmal events at a 15-month follow-up. © RSNA, 2022 See also the editorial by Sakuma in this issue.


Subject(s)
Aortic Aneurysm, Abdominal , Aortic Rupture , Elasticity Imaging Techniques , Thrombosis , Adult , Aged , Aged, 80 and over , Aorta, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/complications , Female , Humans , Male , Middle Aged , Proportional Hazards Models , Prospective Studies , Risk Factors , Thrombosis/complications
9.
J Magn Reson Imaging ; 56(6): 1722-1732, 2022 12.
Article in English | MEDLINE | ID: mdl-35289470

ABSTRACT

BACKGROUND: Magnetic resonance elastography (MRE) is an imaging technique that can noninvasively assess the shear properties of the intervertebral disc (IVD). Unlike the standard gradient recalled echo (GRE) MRE technique, a spin-echo echo-planar imaging (SE-EPI) sequence has the potential to improve imaging efficiency and patient compliance. PURPOSE: To validate the use of an SE-EPI sequence for MRE of the IVD compared against the standard GRE sequence. STUDY TYPE: Cross-over. SUBJECTS: Twenty-eight healthy volunteers (15 males and 13 females, age range: 19-55). FIELD STRENGTH/SEQUENCE: 3 T; GRE, SE-EPI with breath holds (SE-EPI-BH) and SE-EPI with free breathing (SE-EPI-FB) MRE sequences. ASSESSMENT: MRE-derived shear stiffnesses were calculated via principal frequency analysis. SE-EPI derived shear stiffness and octahedral shear strain signal-to-noise ratios (OSS-SNR) were compared against those derived using the GRE sequence. The reproducibility and repeatability of SE-EPI stiffness measurements were determined. Shear stiffness was evaluated in the nucleus pulposus (NP) and annulus fibrosus (AF) regions of the disc. Scan times between sequences were compared. STATISTICAL TESTS: Linear mixed models, Bland-Altman plots, and Lin's concordance correlation coefficients (CCCs) were used with P < 0.05 considered statistically significant. RESULTS: Good correlation was observed between shear stiffnesses derived from the SE-EPI sequences with those derived from the GRE sequence with CCC values greater than 0.73 and 0.78 for the NP and AF regions, respectively. OSS-SNR was not significantly different between GRE and SE-EPI sequences (P > 0.05). SE-EPI sequences generated highly reproducible and repeatable stiffness measurements with CCC values greater than 0.97 in the NP and AF regions and reduced scan time by at least 51% compared to GRE. SE-EPI-BH and SE-EPI-FB stiffness measurements were similar with CCC values greater than 0.98 for both regions. DATA CONCLUSION: SE-EPI-based MRE-derived stiffnesses were highly reproducible and repeatable and correlated with current standard GRE MRE-derived stiffness estimates while reducing scan times. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.


Subject(s)
Elasticity Imaging Techniques , Intervertebral Disc , Male , Female , Humans , Young Adult , Adult , Middle Aged , Elasticity Imaging Techniques/methods , Echo-Planar Imaging/methods , Reproducibility of Results , Signal-To-Noise Ratio , Intervertebral Disc/diagnostic imaging , Magnetic Resonance Imaging/methods
10.
Dalton Trans ; 51(3): 1175-1181, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-34951420

ABSTRACT

Electronic effect and geometry distortion of low-symmetry ligand-field on the anisotropy barrier (Ueff) of spin reversal have been compared in three Dy(III) single-ion magnets through the simultaneous binding of chelating ligands. The substitution of N,O-salicylaldoxime by N,N'-1,10-phenanthroline in the distorted triangular-dodecahedronal field sharply decreases the Ueff by 286 K due to an increase in non-preferred transverse anisotropy, while the geometry distortion with CShM = 1.569 went down to 1.376 only lowering the Ueff by 12 K. The co-coordination strategy of heterodonor ligands highlights the importance of ligand-surroundings on the relaxation dynamics.

11.
Phys Med Biol ; 66(16)2021 08 02.
Article in English | MEDLINE | ID: mdl-34261056

ABSTRACT

Direct inversion (DI) derives tissue shear modulus by inverting the Helmholtz equation. However, conventional DI is sensitive to data quality due to the ill-posed nature of Helmholtz inversion and thus providing reliable stiffness estimation can be challenging. This becomes more problematic in the case of estimating shear stiffness of the lung in which the low tissue density and short T2* result in considerably low signal-to-noise ratio during lung MRE. In the present study, we propose to perform MRE inversion by compressive recovery (MICRo). Such a technique aims to improve the numerical stability and the robustness to data noise of Helmholtz inversion by using prior knowledge on data noise and transform sparsity of the stiffness map. The developed inversion strategy was first validated in simulated phantoms with known stiffness. Next, MICRo was compared to the standard clinical multi-modal DI (MMDI) method forin vivoliver MRE in healthy subjects and patients with different stages of liver fibrosis. After establishing the accuracy of MICRo, we demonstrated the robustness of the proposed technique against data noise in lung MRE with healthy subjects. In simulated phantoms with single-directional or multi-directional waves, MICRo outperformed DI with Romano filter or Savitsky and Golay filter, especially when the stiffness and/or noise level was high. In hepatic MRE application, agreement was observed between MICRo and MMDI. Measuringin vivolung stiffness, MICRo demonstrated its advantages over filtered DI by yielding stable stiffness estimation at both residual volume and total lung capacity. These preliminary results demonstrate the potential value of the proposed technique and also warrant further investigation in a larger clinical population.


Subject(s)
Elasticity Imaging Techniques , Healthy Volunteers , Humans , Liver/diagnostic imaging , Magnetic Resonance Imaging , Phantoms, Imaging
12.
NMR Biomed ; 34(1): e4420, 2021 01.
Article in English | MEDLINE | ID: mdl-33021342

ABSTRACT

INTRODUCTION: Magnetic resonance elastography (MRE)-derived aortic stiffness is a potential biomarker for multiple cardiovascular diseases. Currently, gradient-recalled echo (GRE) MRE is a widely accepted technique to estimate aortic stiffness. However, multi-slice GRE MRE requires multiple breath-holds (BHs), which can be challenging for patients who cannot consistently hold their breath. The aim of this study was to investigate the feasibility of a multi-slice spin-echo echo-planar imaging (SE-EPI) MRE sequence for quantifying in vivo aortic stiffness using a free-breathing (FB) protocol and a single-BH protocol. METHOD: On Scanner 1, 25 healthy subjects participated in the validation of FB SE-EPI against FB GRE. On Scanner 2, another 15 healthy subjects were recruited to compare FB SE-EPI with single-BH SE-EPI. Among all volunteers, five participants were studied on both scanners to investigate the inter-scanner reproducibility of FB SE-EPI aortic MRE. Bland-Altman analysis, Lin's concordance correlation coefficient (LCCC) and coefficient of variation (COV) were evaluated. The phase-difference signal-to-noise ratios (PD SNR) were compared. RESULTS: Aortic MRE using FB SE-EPI and FB GRE yielded similar stiffnesses (paired t-test, P = 0.19), with LCCC = 0.97. The FB SE-EPI measurements were reproducible (intra-scanner LCCC = 0.96) and highly repeatable (LCCC = 0.99). The FB SE-EPI MRE was also reproducible across different scanners (inter-scanner LCCC = 0.96). Single-BH SE-EPI scans yielded similar stiffness to FB SE-EPI scans (LCCC = 0.99) and demonstrated a low COV of 2.67% across five repeated measurements. CONCLUSION: Multi-slice SE-EPI aortic MRE using an FB protocol or a single-BH protocol is reproducible and repeatable with advantage over multi-slice FB GRE in reducing acquisition time. Additionally, FB SE-EPI MRE provides a potential alternative to BH scans for patients who have challenges in holding their breath.


Subject(s)
Aorta, Abdominal/diagnostic imaging , Cardiac-Gated Imaging Techniques/methods , Elasticity Imaging Techniques/methods , Magnetic Resonance Imaging/methods , Vascular Stiffness , Aorta, Abdominal/physiology , Cardiac-Gated Imaging Techniques/instrumentation , Echo-Planar Imaging/instrumentation , Echo-Planar Imaging/methods , Elasticity Imaging Techniques/instrumentation , Feasibility Studies , Humans , Magnetic Resonance Imaging/instrumentation , Reference Values , Reproducibility of Results , Respiration , Signal-To-Noise Ratio
13.
Invest Radiol ; 55(7): 463-472, 2020 07.
Article in English | MEDLINE | ID: mdl-32520516

ABSTRACT

OBJECTIVES: Using maximum diameter of an abdominal aortic aneurysm (AAA) alone for management can lead to delayed interventions or unnecessary urgent repairs. Abdominal aortic aneurysm stiffness plays an important role in its expansion and rupture. In vivo aortic magnetic resonance elastography (MRE) was developed to spatially measure AAA stiffness in previous pilot studies and has not been thoroughly validated and evaluated for its potential clinical value. This study aims to evaluate noninvasive in vivo aortic MRE-derived stiffness in an AAA porcine model and investigate the relationships between MRE-derived AAA stiffness and (1) histopathology, (2) uniaxial tensile test, and (3) burst testing for assessing MRE's potential in evaluating AAA rupture risk. MATERIALS AND METHODS: Abdominal aortic aneurysm was induced in 31 Yorkshire pigs (n = 226 stiffness measurements). Animals were randomly divided into 3 cohorts: 2-week, 4-week, and 4-week-burst. Aortic MRE was sequentially performed. Histopathologic analyses were performed to quantify elastin, collagen, and mineral densities. Uniaxial tensile test and burst testing were conducted to measure peak stress and burst pressure for assessing the ultimate wall strength. RESULTS: Magnetic resonance elastography-derived AAA stiffness was significantly higher than the normal aorta. Significant reduction in elastin and collagen densities as well as increased mineralization was observed in AAAs. Uniaxial tensile test and burst testing revealed reduced ultimate wall strength. Magnetic resonance elastography-derived aortic stiffness correlated to elastin density (ρ = -0.68; P < 0.0001; n = 60) and mineralization (ρ = 0.59; P < 0.0001; n = 60). Inverse correlations were observed between aortic stiffness and peak stress (ρ = -0.32; P = 0.0495; n = 38) as well as burst pressure (ρ = -0.55; P = 0.0116; n = 20). CONCLUSIONS: Noninvasive in vivo aortic MRE successfully detected aortic wall stiffening, confirming the extracellular matrix remodeling observed in the histopathologic analyses. These mural changes diminished wall strength. Inverse correlation between MRE-derived aortic stiffness and aortic wall strength suggests that MRE-derived stiffness can be a potential biomarker for clinically assessing AAA wall status and rupture potential.


Subject(s)
Aortic Aneurysm, Abdominal/diagnostic imaging , Elasticity Imaging Techniques , Animals , Collagen/metabolism , Disease Models, Animal , Elastin/metabolism , Swine , Vascular Calcification/diagnostic imaging , Vascular Stiffness
14.
NMR Biomed ; 33(4): e4237, 2020 04.
Article in English | MEDLINE | ID: mdl-31889353

ABSTRACT

Stiffness plays an important role in diagnosing renal fibrosis. However, kidney stiffness is altered by perfusion changes in many kidney diseases. Therefore, the aim of the current study is to determine the correlation of kidney stiffness with water intake. We hypothesize that kidney stiffness will increase with 1 L of water intake due to increased water perfusion to the kidneys. Additionally, stiffness of the kidneys will correlate with apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values before and after water intake. A 3 T MRI scanner was used to perform magnetic resonance elastography and diffusion tensor imaging of the kidneys on 24 healthy subjects (age range: 22-66 years) before and after water intake of 1 L. A 3D T1-weighted bladder scan was also performed to measure bladder volume before and after water intake. A paired t-test was performed to evaluate the effect of water intake on the stiffness of kidneys, in addition to bladder volume. A Spearman correlation test was performed to determine the association between stiffness, bladder volume, ADC and FA values of both kidneys before and after water intake. The results show a significant increase in stiffness in different regions of the kidney (ie, percentage increase ranged from 3.6% to 7.5%) and bladder volume after water intake (all P < 0.05). A moderate significant negative correlation was observed between change in kidney stiffness and bladder volume (concordance correlation coefficient = -0.468, P < 0.05). No significant correlation was observed between stiffness and ADC or FA values before and after water intake in both kidneys (P > 0.05). Water intake caused a significant increase in the stiffness of the kidneys. The negative correlation between the change in kidney stiffness and bladder volume, before and after water intake, indicates higher perfusion pressure in the kidneys, leading to increased stiffness.


Subject(s)
Elasticity Imaging Techniques , Kidney/diagnostic imaging , Kidney/physiology , Magnetic Resonance Imaging , Perfusion , Water/chemistry , Adult , Aged , Biomechanical Phenomena , Diffusion Tensor Imaging , Female , Humans , Male , Middle Aged , Spin Labels , Young Adult
15.
NMR Biomed ; 32(11): e4141, 2019 11.
Article in English | MEDLINE | ID: mdl-31329347

ABSTRACT

The purpose of this study is 1) to demonstrate reproducibility of spin echo-echo planar imaging (SE-EPI) magnetic resonance elastography (MRE) to estimate kidney stiffness; and 2) to compare SE-EPI MRE and gradient recalled echo (GRE) MRE-derived stiffness estimations in various anatomical regions of the kidney. Kidney MRE was performed on 33 healthy subjects (8 for SE-EPI MRE reproducibility and 25 for comparison with GRE MRE; age range: 22-66 years) in a 3 T MRI scanner. To demonstrate SE-EPI MRE reproducibility, subjects were scanned for the first scan and then asked to leave the scan room and repositioned again for the second (repeat) scan. Similar set-up was used for GRE MRE as well. The displacement data was then processed to obtain overall stiffness estimates of the kidney. Concordance correlation analyses were performed to determine SE-EPI MRE reproducibility and agreement between GRE MRE and SE-EPI MRE derived stiffness. A high concordance correlation (ρc  = 0.95; p-value<0.0001) was obtained for SE-EPI MRE reproducibility. Good concordance correlation was observed (ρc  = 0.84; p < 0.0001 for both kidneys, ρc  = 0.91; p < 0.0001 for right kidney and ρc  = 0.78; p < 0.0001 for left kidney) between GRE MRE and SE-EPI MRE derived stiffness measurements. Paired t-test results showed that stiffness value of medulla was significantly (p < 0.0001) greater than cortex using SE-EPI MRE as well as GRE MRE. SE-EPI MRE was reproducible and good agreement was observed in MRE-derived stiffness measurements obtained using SE-EPI and GRE sequences. Therefore, SE-EPI can be used for kidney MRE applications.


Subject(s)
Elasticity Imaging Techniques , Kidney/diagnostic imaging , Magnetic Resonance Spectroscopy , Adult , Aged , Echo-Planar Imaging , Humans , Kidney/physiopathology , Middle Aged , Reproducibility of Results , Spin Labels , Young Adult
16.
NMR Biomed ; 32(7): e4102, 2019 07.
Article in English | MEDLINE | ID: mdl-31087728

ABSTRACT

Lung diseases are one of the leading causes of death worldwide, from which four million people die annually. Lung diseases are associated with changes in the mechanical properties of the lungs. Several studies have shown the feasibility of using magnetic resonance elastography (MRE) to quantify the lungs' shear stiffness. The aim of this study is to investigate the reproducibility and repeatability of lung MRE, and its shear stiffness measurements, obtained using a modified spin echo-echo planar imaging (SE-EPI) MRE sequence. In this study, 21 healthy volunteers were scanned twice by repositioning the volunteers to image right lung both at residual volume (RV) and total lung capacity (TLC) to assess the reproducibility of lung shear stiffness measurements. Additionally, 19 out of the 21 volunteers were scanned immediately without moving the volunteers to test the repeatability of the modified SE-EPI MRE sequence. A paired t-test was performed to determine the significant difference between stiffness measurements obtained at RV and TLC. Concordance correlation and Bland-Altman's analysis were performed to determine the reproducibility and repeatability of the SE-EPI MRE-derived shear stiffness measurements. The SE-EPI MRE sequence is highly repeatable with a concordance correlation coefficient (CCC) of 0.95 at RV and 0.96 at TLC. Similarly, the stiffness measurements obtained across all volunteers were highly reproducible with a CCC of 0.95 at RV and 0.92 at TLC. The mean shear stiffness of the lung at RV was 0.93 ± 0.22 kPa and at TLC was 1.41 ± 0.41 kPa. TLC showed a significantly higher mean shear stiffness (P = 0.0004) compared with RV. Lung MRE stiffness measurements obtained using the SE-EPI sequence were reproducible and repeatable, both at RV and TLC. Lung shear stiffness changes across respiratory cycle with significantly higher stiffness at TLC than RV.


Subject(s)
Elasticity Imaging Techniques , Lung/diagnostic imaging , Magnetic Resonance Imaging , Adult , Echo-Planar Imaging , Female , Humans , Image Processing, Computer-Assisted , Male , Reproducibility of Results , Residual Volume , Signal-To-Noise Ratio
17.
Top Magn Reson Imaging ; 27(5): 363-384, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30289831

ABSTRACT

The mechanical properties of soft tissues are closely associated with a variety of diseases. This motivates the development of elastography techniques in which tissue mechanical properties are quantitatively estimated through imaging. Magnetic resonance elastography (MRE) is a noninvasive phase-contrast MR technique wherein shear modulus of soft tissue can be spatially and temporally estimated. MRE has recently received significant attention due to its capability in noninvasively estimating tissue mechanical properties, which can offer considerable diagnostic potential. In this work, recent technology advances of MRE, its future clinical applications, and the related limitations will be discussed.


Subject(s)
Elasticity Imaging Techniques/methods , Elasticity Imaging Techniques/trends , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/trends , Humans , Image Processing, Computer-Assisted/trends
18.
Dalton Trans ; 47(43): 15344-15352, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30280741

ABSTRACT

Three isostructural heterometallic metal-organic frameworks (MOFs) {[Ln2Ni(OAc)5(HL)(L)]·solvent molecules}n (H2L = 2-hydroxyimino-N-[1-(2-pyrazinyl)ethylidene]-propanohydrazone, Ln = Dy for 1, Tb for 2 and Gd for 3) were solvothermally synthesized by varying rare-earth metal ions with different electron configurations. Their crystal structures, gas adsorption and magnetic behaviors were fully investigated. The three isomorphous MOFs exhibit three-dimensional microporous frameworks with two different orientated dodecane metallic {NiIILnIII(HL)}6 metallomacrocycles alternately connected by {LnIII(L)} connectors, in which an empty one-dimensional channel decorated by the basic hydrazone interior is generated. Due to their LnIII-independent microporous nature, the activated sample of 1 as a representative example has a significant CO2 uptake up to 42.2 cm3 g-1 and an unusually high CO2/N2 and CO2/CH4 adsorption selectivity of up to 98.8 and 16.8 at 298 K and 100 kPa. Magnetically, apparent antiferromagnetic interactions for both 1 and 2 as well as ferromagnetic coupling for 3 are respectively observed at low temperature resulting from the competition of magnetic anisotropy and intermetallic ferromagnetic superexchange. Additionally, 1 with highly anisotropic DyIII spin shows slow magnetization relaxation under zero dc field, whereas 3 possessing isotropic GdIII ions displays a significant cryogenic magnetocaloric effect with a maximum entropy change of 26.6 J kg-1 K-1 at 3.0 K and 70 kOe. These interesting results can provide valuable information on gas separation-based multifunctional 3d-4f MOF materials.

20.
Dalton Trans ; 47(1): 169-179, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29192927

ABSTRACT

Three series of six pyrazine-2-amidoxime (H2pzaox)-based 3d-4f clusters, {Ln8Ni6}, {Ln5Ni10} and {Ln5Ni8} (Ln = Dy and Gd), were solvothermally synthesized in the absence or presence of different coligands, and were structurally and magnetically characterized. The unusual ring-shaped {Ln8(µ3-OH)4} core in the two {Ln8Ni6} complexes is generated by four corner-sharing triangle {Ln3(µ3-OH)} units, which are further connected to six outer NiII ions by twelve deprotonated H2pzaox ligands in three common binding modes. By contrast, the remaining four clusters contain only two corner-sharing {Ln3(µ3-OH)} triangles, which interact with peripheral NiII ions through fourteen H2pzaox ligands in five (for {Ln5Ni10}) and four (for {Ln5Ni8}) different bridging ways. Thus, the interesting core motifs observed in these clusters depend significantly on the number of the triangular {Ln3(µ3-OH)} subunits and their connectivity manner with the singly and doubly deprotonated pyrazine-2-amidoxime ligand. Additionally, weak ferromagnetic superexchange in the {Dy5Ni10} and {Ln5Ni8} clusters and antiferromagnetic coupling in {Ln8Ni6} and {Gd5Ni10} clusters was respectively mediated by versatile oximate bridges between the intramolecular LnIII and NiII ions. Furthermore, the three DyIII-derived aggregates exhibit slightly temperature-dependent magnetic relaxations under a zero dc field, and the three GdIII-based clusters display large magnetic entropy changes of 23.5 J kg-1 K-1 for {Gd8Ni6}, 19.4 J kg-1 K-1 for {Gd5Ni10}, and 22.4 J kg-1 K-1 for {Ln5Ni8} at 4.0 K and 70 kOe. These interesting results are helpful for the understanding of oximate-based 3d-4f coordination chemistry and their structure-function relationships.

SELECTION OF CITATIONS
SEARCH DETAIL