Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Am Chem Soc ; 145(40): 22135-22149, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37773962

ABSTRACT

DNA frameworks, consisting of constitutional dynamic networks (CDNs) undergoing fuel-driven reconfiguration, are coupled to a dissipative reaction module that triggers the reconfigured CDNs into a transient intermediate CDNs recovering the parent CDN state. Biocatalytic cascades consisting of the glucose oxidase (GOx)/horseradish peroxidase (HRP) couple or the lactate dehydrogenase (LDH)/nicotinamide adenine dinucleotide (NAD+) couple are tethered to the constituents of two different CDNs, allowing the CDNs-guided operation of the spatially confined GOx/HRP or LDH/NAD+ biocatalytic cascades. By applying two different fuel triggers, the directional transient CDN-guided upregulation/downregulation of the two biocatalytic cascades are demonstrated. By mixing the GOx/HRP-biocatalyst-modified CDN with the LDH/NAD+-biocatalyst-functionalized CDN, a composite CDN is assembled. Triggering the composite CDN with two different fuel strands results in orthogonal transient upregulation of the GOx/HRP cascade and transient downregulation of the LDH/NAD+ cascade or vice versa. The transient CDNs-guided biocatalytic cascades are computationally simulated by kinetic models, and the computational analyses allow the prediction of the performance of transient biocatalytic cascades under different auxiliary conditions. The concept of orthogonally triggered temporal, transient, biocatalytic cascades by means of CDN frameworks is applied to design an orthogonally operating CDN for the temporal upregulated or downregulated transient thrombin-induced coagulation of fibrinogen to fibrin.


Subject(s)
DNA, Catalytic , DNA, Catalytic/metabolism , NAD , DNA , Biocatalysis , Glucose Oxidase/metabolism
2.
Angew Chem Int Ed Engl ; 62(33): e202307898, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37380611

ABSTRACT

Native G-quadruplex-regulated temporal biocatalytic circuits, gene polymerization, and transcription processes are emulated by biomimetic, synthetically engineered transcription machineries coupled to reconfigurable G-quadruplex nanostructures. These are addressed by the following example: (i) A reaction module demonstrates the fuel-triggered transcription machinery-guided transient synthesis of G-quadruplex nanostructures. (ii) A dynamically triggered and modulated transcription machinery that guides the temporal separation and reassembly of the anti-thrombin G-quadruplex aptamer/thrombin complex is introduced, and the transient thrombin-catalyzed coagulation of fibrinogen is demonstrated. (iii) A dynamically fueled transient transcription machinery for the temporal activation of G-quadruplex-topologically blocked gene polymerization circuits is introduced. (iv) Transcription circuits revealing G-quadruplex-promoted or G-quadruplex-inhibited cascaded transcription machineries are presented. Beyond advancing the rapidly developing field of dynamically modulated G-quadruplex DNA nanostructures, the systems introduce potential therapeutic applications.


Subject(s)
Aptamers, Nucleotide , G-Quadruplexes , Gene Regulatory Networks , Biocatalysis , DNA , Thrombin/metabolism , Aptamers, Nucleotide/chemistry
3.
Chem Rev ; 123(10): 6839-6887, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37078690

ABSTRACT

This review article introduces mechanistic aspects and applications of photochemically deprotected ortho-nitrobenzyl (ONB)-functionalized nucleic acids and their impact on diverse research fields including DNA nanotechnology and materials chemistry, biological chemistry, and systems chemistry. Specific topics addressed include the synthesis of the ONB-modified nucleic acids, the mechanisms involved in the photochemical deprotection of the ONB units, and the photophysical and chemical means to tune the irradiation wavelength required for the photodeprotection process. Principles to activate ONB-caged nanostructures, ONB-protected DNAzymes and aptamer frameworks are introduced. Specifically, the use of ONB-protected nucleic acids for the phototriggered spatiotemporal amplified sensing and imaging of intracellular mRNAs at the single-cell level are addressed, and control over transcription machineries, protein translation and spatiotemporal silencing of gene expression by ONB-deprotected nucleic acids are demonstrated. In addition, photodeprotection of ONB-modified nucleic acids finds important applications in controlling material properties and functions. These are introduced by the phototriggered fusion of ONB nucleic acid functionalized liposomes as models for cell-cell fusion, the light-stimulated fusion of ONB nucleic acid functionalized drug-loaded liposomes with cells for therapeutic applications, and the photolithographic patterning of ONB nucleic acid-modified interfaces. Particularly, the photolithographic control of the stiffness of membrane-like interfaces for the guided patterned growth of cells is realized. Moreover, ONB-functionalized microcapsules act as light-responsive carriers for the controlled release of drugs, and ONB-modified DNA origami frameworks act as mechanical devices or stimuli-responsive containments for the operation of DNA machineries such as the CRISPR-Cas9 system. The future challenges and potential applications of photoprotected DNA structures are discussed.


Subject(s)
Liposomes , Nanostructures , DNA/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Oligonucleotides
4.
ACS Nano ; 17(1): 687-696, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36576858

ABSTRACT

Transient transcription machineries play important roles in the dynamic modulation of gene expression and the sequestered regulation of cellular networks. The present study emulates such processes by designing artificial reaction modules consisting of transcription machineries that guide the transient synthesis of catalytic DNAzymes, the transient operation of gated DNAzymes, and the temporal activation of an intercommunicated DNAzyme cascade. The reaction modules rely on functional constituents that lead to the triggered activation of transcription machineries in the presence of the nucleoside triphosphates oligonucleotide fuel, yielding the transient formation and dissipative depletion of the intermediate DNAzyme(s) products. The kinetics of the transient DNAzyme networks are computationally simulated, allowing to predict and experimentally validate the performance of the systems under different auxiliary conditions. The study advances the field of systems chemistry by introducing transcription machinery-based networks for the dynamic control over transient catalysis─a primary step toward life-like cellular assemblies.


Subject(s)
DNA, Catalytic , DNA, Catalytic/metabolism , Nucleotides , Catalysis
5.
Chem Soc Rev ; 51(17): 7631-7661, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35975685

ABSTRACT

G-Quadruplexes attract growing interest as functional constituents in biology, chemistry, nanotechnology, and material science. In particular, the reversible dynamic reconfiguration of G-quadruplexes provides versatile means to switch DNA nanostructures, reversibly control catalytic functions of DNA assemblies, and switch material properties and functions. The present review article discusses the switchable dynamic reconfiguration of G-quadruplexes as central functional and structural motifs that enable diverse applications in DNA nanotechnology and material science. The dynamic reconfiguration of G-quadruplexes has a major impact on the development of DNA switches and DNA machines. The integration of G-quadruplexes with enzymes yields supramolecular assemblies exhibiting switchable catalytic functions guided by dynamic G-quadruplex topologies. In addition, G-quadruplexes act as important building blocks to operate constitutional dynamic networks and transient dissipative networks mimicking complex biological dynamic circuitries. Furthermore, the integration of G-quadruplexes with DNA nanostructures, such as origami tiles, introduces dynamic and mechanical features into these static frameworks. Beyond the dynamic operation of G-quadruplex structures in solution, the assembly of G-quadruplexes on bulk surfaces such as electrodes or nanoparticles provides versatile means to engineer diverse electrochemical and photoelectrochemical devices and to switch the dynamic aggregation/deaggregation of nanoparticles, leading to nanoparticle assemblies that reveal switchable optical properties. Finally, the functionalization of hydrogels, hydrogel microcapsules, or nanoparticle carriers, such as SiO2 nanoparticles or metal-organic framework nanoparticles, yields stimuli-responsive materials exhibiting shape-memory, self-healing, and controlled drug release properties. Indeed, G-quadruplex-modified nanomaterials find growing interest in the area of nanomedicine. Beyond the impressive G-quadruplex-based scientific advances achieved to date, exciting future developments are still anticipated. The review addresses these goals by identifying the potential opportunities and challenges ahead of the field in the coming years.


Subject(s)
G-Quadruplexes , Nanostructures , DNA/chemistry , Hydrogels/chemistry , Nanostructures/chemistry , Nanotechnology , Silicon Dioxide
6.
ACS Nano ; 16(4): 6153-6164, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35294174

ABSTRACT

The dynamic transient formation and depletion of G-quadruplexes regulate gene replication and transcription. This process was found to be related to various diseases such as cancer and premature aging. We report on the engineering of nucleic acid modules revealing dynamic, transient assembly and disassembly of G-quadruplex structures and G-quadruplex-based DNAzymes, gated transient processes, and cascaded dynamic transient reactions that involve G-quadruplex and DNAzyme structures. The dynamic transient processes are driven by functional DNA reaction modules activated by a fuel strand and guided toward dissipative operation by a nicking enzyme (Nt.BbvCI). The dynamic networks were further characterized by computational simulation of the experiments using kinetic models, allowing us to predict the dynamic performance of the networks under different auxiliary conditions applied to the systems. The systems reported herein could provide functional DNA machineries for the spatiotemporal control of G-quadruplex structures perturbing gene expression and thus provide a therapeutic means for related emergent diseases.


Subject(s)
DNA, Catalytic , G-Quadruplexes , DNA, Catalytic/metabolism , DNA/genetics , DNA/chemistry
7.
Nat Commun ; 12(1): 4408, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34344888

ABSTRACT

Placenta accreta spectrum (PAS) is a high-risk obstetrical condition associated with significant morbidity and mortality. Current clinical screening modalities for PAS are not always conclusive. Here, we report a nanostructure-embedded microchip that efficiently enriches both single and clustered circulating trophoblasts (cTBs) from maternal blood for detecting PAS. We discover a uniquely high prevalence of cTB-clusters in PAS and subsequently optimize the device to preserve the intactness of these clusters. Our feasibility study on the enumeration of cTBs and cTB-clusters from 168 pregnant women demonstrates excellent diagnostic performance for distinguishing PAS from non-PAS. A logistic regression model is constructed using a training cohort and then cross-validated and tested using an independent cohort. The combined cTB assay achieves an Area Under ROC Curve of 0.942 (throughout gestation) and 0.924 (early gestation) for distinguishing PAS from non-PAS. Our assay holds the potential to improve current diagnostic modalities for the early detection of PAS.


Subject(s)
Maternal Serum Screening Tests/methods , Placenta Accreta/diagnosis , Trophoblasts/pathology , Adult , Biomarkers/blood , Cell Aggregation , Cohort Studies , Diagnosis, Differential , Female , Humans , Lab-On-A-Chip Devices , Maternal Serum Screening Tests/instrumentation , Middle Aged , Nanostructures , Placenta Accreta/blood , Placenta Previa/blood , Placenta Previa/diagnosis , Pregnancy , ROC Curve , Reproducibility of Results
8.
Adv Funct Mater ; 30(49)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-34220409

ABSTRACT

Tumor-derived extracellular vesicles (EVs) play essential roles in intercellular communication during tumor growth and metastatic evolution. Currently, little is known about the possible roles of tumor-derived EVs in sarcoma because the lack of specific surface markers makes it technically challenging to purify sarcoma-derived EVs. In this study, a specific purification system is developed for Ewing sarcoma (ES)-derived EVs by coupling covalent chemistry-mediated EV capture/ release within a nanostructure-embedded microchip. The purification platform-ES-EV Click Chip-takes advantage of specific anti-LINGO-1 recognition and sensitive click chemistry-mediated EV capture, followed by disulfide cleavage-driven EV release. Since the device is capable of specific and efficient purification of intact ES EVs with high purity, ES-EV Click Chip is ideal for conducting downstream functional studies of ES EVs. Absolute quantification of the molecular hallmark of ES (i.e., EWS rearrangements) using reverse transcription Droplet Digital PCR enables specific quantification of ES EVs. The purified ES EVs can be internalized by recipient cells and transfer their mRNA cargoes, exhibiting their biological intactness and potential role as biological shuttles in intercellular communication.

9.
Adv Mater ; 32(1): e1903663, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31566837

ABSTRACT

Circulating rare cells in the blood are of great significance for both materials research and clinical applications. For example, circulating tumor cells (CTCs) have been demonstrated as useful biomarkers for "liquid biopsy" of the tumor. Circulating fetal nucleated cells (CFNCs) have shown potential in noninvasive prenatal diagnostics. However, it is technically challenging to detect and isolate circulating rare cells due to their extremely low abundance compared to hematologic cells. Nanostructured substrates offer a unique solution to address these challenges by providing local topographic interactions to strengthen cell adhesion and large surface areas for grafting capture agents, resulting in improved cell capture efficiency, purity, sensitivity, and reproducibility. In addition, rare-cell retrieval strategies, including stimulus-responsiveness and additive reagent-triggered release on different nanostructured substrates, allow for on-demand retrieval of the captured CTCs/CFNCs with high cell viability and molecular integrity. Several nanostructured substrate-enabled CTC/CFNC assays are observed maturing from enumeration and subclassification to molecular analyses. These can one day become powerful tools in disease diagnosis, prognostic prediction, and dynamic monitoring of therapeutic response-paving the way for personalized medical care.


Subject(s)
Cell Separation/methods , Nanostructures/chemistry , Neoplastic Cells, Circulating/pathology , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Epithelial Cell Adhesion Molecule/immunology , Epithelial Cell Adhesion Molecule/metabolism , Gold/chemistry , Humans , Neoplasms/classification , Neoplasms/diagnosis , Neoplastic Cells, Circulating/metabolism
10.
Sci Adv ; 5(7): eaav9186, 2019 07.
Article in English | MEDLINE | ID: mdl-31392269

ABSTRACT

Well-preserved mRNA in circulating tumor cells (CTCs) offers an ideal material for conducting molecular profiling of tumors, thereby providing a noninvasive diagnostic solution for guiding treatment intervention and monitoring disease progression. However, it is technically challenging to purify CTCs while retaining high-quality mRNA.Here, we demonstrate a covalent chemistry-based nanostructured silicon substrate ("Click Chip") for CTC purification that leverages bioorthogonal ligation-mediated CTC capture and disulfide cleavage-driven CTC release. This platform is ideal for CTC mRNA assays because of its efficient, specific, and rapid purification of pooled CTCs, enabling downstream molecular quantification using reverse transcription Droplet Digital polymerase chain reaction. Rearrangements of ALK/ROS1 were quantified using CTC mRNA and matched with those identified in biopsy specimens from 12 patients with late-stage non-small cell lung cancer. Moreover, CTC counts and copy numbers of ALK/ROS1 rearrangements could be used together for evaluating treatment responses and disease progression.


Subject(s)
Anaplastic Lymphoma Kinase/genetics , Carcinoma, Non-Small-Cell Lung/blood , Neoplastic Cells, Circulating/chemistry , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics , RNA, Messenger/blood , Adult , Aged , Anaplastic Lymphoma Kinase/chemistry , Carcinoma, Non-Small-Cell Lung/chemistry , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Click Chemistry/methods , Female , Gene Rearrangement/genetics , Humans , Male , Middle Aged , Nanostructures/chemistry , Neoplasm Staging , Protein-Tyrosine Kinases/chemistry , Proto-Oncogene Proteins/chemistry , RNA, Messenger/isolation & purification , Silicon/chemistry
11.
ACS Appl Mater Interfaces ; 11(15): 13973-13983, 2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30892008

ABSTRACT

Tumor-derived extracellular vesicles (EVs) present in bodily fluids are emerging liquid biopsy markers for non-invasive cancer diagnosis and treatment monitoring. Because the majority of EVs in circulation are not of tumor origin, it is critical to develop new platforms capable of enriching tumor-derived EVs from the blood. Herein, we introduce a biostructure-inspired NanoVilli Chip, capable of highly efficient and reproducible immunoaffinity capture of tumor-derived EVs from blood plasma samples. Anti-EpCAM-grafted silicon nanowire arrays were engineered to mimic the distinctive structures of intestinal microvilli, dramatically increasing surface area and enhancing tumor-derived EV capture. RNA in the captured EVs can be recovered for downstream molecular analyses by reverse transcription Droplet Digital PCR. We demonstrate that this assay can be applied to monitor the dynamic changes of ROS1 rearrangements and epidermal growth factor receptor T790M mutations that predict treatment responses and disease progression in non-small cell lung cancer patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/genetics , Extracellular Vesicles/metabolism , Lung Neoplasms/pathology , Nanowires/chemistry , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics , Adult , Aged , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Epithelial Cell Adhesion Molecule/immunology , Female , Gene Rearrangement , Humans , Lung Neoplasms/genetics , Male , Middle Aged , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , RNA, Messenger/metabolism , Silicon/chemistry
12.
Adv Drug Deliv Rev ; 125: 78-93, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29551650

ABSTRACT

Circulating tumor cells (CTCs) are cancer cells shredded from either a primary tumor or a metastatic site and circulate in the blood as the potential cellular origin of metastasis. By detecting and analyzing CTCs, we will be able to noninvasively monitor disease progression in individual cancer patients and obtain insightful information for assessing disease status, thus realizing the concept of "tumor liquid biopsy". However, it is technically challenging to identify CTCs in patient blood samples because of the extremely low abundance of CTCs among a large number of hematologic cells. In order to address this challenge, our research team at UCLA pioneered a unique concept of "NanoVelcro" cell-affinity substrates, in which CTC capture agent-coated nanostructured substrates were utilized to immobilize CTCs with remarkable efficiency. Four generations of NanoVelcro CTC assays have been developed over the past decade for a variety of clinical utilities. The 1st-gen NanoVelcro Chips, composed of a silicon nanowire substrate (SiNS) and an overlaid microfluidic chaotic mixer, were created for CTC enumeration. The 2nd-gen NanoVelcro Chips (i.e., NanoVelcro-LMD), based on polymer nanosubstrates, were developed for single-CTC isolation in conjunction with the use of the laser microdissection (LMD) technique. By grafting thermoresponsive polymer brushes onto SiNS, the 3rd-gen Thermoresponsive NanoVelcro Chips have demonstrated the capture and release of CTCs at 37 and 4 °C respectively, thereby allowing for rapid CTC purification while maintaining cell viability and molecular integrity. Fabricated with boronic acid-grafted conducting polymer-based nanomaterial on chip surface, the 4th-gen NanoVelcro Chips (Sweet chip) were able to purify CTCs with well-preserved RNA transcripts, which could be used for downstream analysis of several cancer specific RNA biomarkers. In this review article, we will summarize the development of the four generations of NanoVelcro CTC assays, and the clinical applications of each generation of devices.


Subject(s)
Cell Separation , Microfluidic Analytical Techniques , Nanotechnology , Neoplastic Cells, Circulating/pathology , Humans , Nanostructures/chemistry
13.
Biosens Bioelectron ; 100: 333-340, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-28942346

ABSTRACT

Nucleoside triphosphates (NTPs) play important roles in living organisms. However, no fluorescent assays are currently available to simply and rapidly detect multiple NTPs with satisfactory selectivity, sensitivity and low cost. Here we demonstrate for the first time a target-triggered in-vitro transcription machinery for ultra-selective, sensitive and instant fluorescence detection of multiple NTPs. The machinery assembles RNA polymerase, DNA template and non-target NTPs to convert the target NTP into equivalent RNA signal sequences which are monitored by the fluorescence enhancement of molecular beacon. The machinery offers excellent selectivity for the target NTP against NDP, NMP and dNTP. Notably, to accelerate the kinetics of the machinery while maintain its high specificity, we investigated the sequence of DNA templates systematically and established a set of guidelines for the design of the optimum DNA templates, which allowed for instant detection of the target NTP at fmol level in less than 1min. Furthermore, the machinery could be transformed into logic gates to study the coeffects of two NTPs in biosynthesis and real-time monitoring systems to reflect the distribution of NTP in nucleotide pools. These results provide very useful and low-cost tools for both biochemical tests and point-of-care analysis.


Subject(s)
Adenosine Triphosphate/analysis , Biosensing Techniques/methods , Cytidine Triphosphate/analysis , Spectrometry, Fluorescence/methods , A549 Cells , Base Sequence , DNA/chemistry , DNA-Directed RNA Polymerases/chemistry , Humans , Kinetics , Transcription, Genetic
14.
Chem Commun (Camb) ; 52(80): 11923-11926, 2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27722246

ABSTRACT

A fuel-limited isothermal DNA machine has been built for the sensitive fluorescence detection of cellular deoxyribonucleoside triphosphates (dNTPs) at the fmol level, which greatly reduces the required sample cell number. Upon the input of the limiting target dNTP, the machine runs automatically at 37 °C without the need for higher temperature.


Subject(s)
DNA/chemistry , Deoxyribonucleosides/analysis , Mass Spectrometry , A549 Cells , Chromatography, High Pressure Liquid , Deoxyribonucleosides/chemistry , Deoxyribonucleosides/metabolism , Fluorescent Dyes/chemistry , Humans , Nucleic Acid Amplification Techniques , Spectrophotometry, Ultraviolet , Temperature
15.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 1): o67, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24527003

ABSTRACT

There are two independent mol-ecules in the asymmetric unit of the title compound, C10H8INO2, which differ in the degree of planarity. The iodo-indoline-2,3-dione skeleton of mol-ecule 1 is essentially planar [mean deviation = 0.003 (2) Šfor the nine non-H atoms of the indoline core, with a maximum deviation of 0.033 (1) Šfor the I atom]. The I atom and O atom in the 3-position of mol-ecule 2 deviate by 0.195 (1) and 0.120 (2) Å, respectively, from the least-squares plane through the nine non-H atoms of the indoline core. Mol-ecules 1 and 2 are roughly coplanar, the mean planes through their cores making a dihedral angle of 6.84 (1)°. This coplanarity results in a layer-like structure parallel to (6,11,17) in the crystal, the distance between adjacent least-squares planes through the cores of mol-ecules 1 and 2 being 3.37 (1) Å. In such a layer, mol-ecules 1 and 2 are linked by C-H⋯O hydrogen bonds, forming chains along [11-1]. The chains are further coupled to construct a kind of double-chain structure via I⋯O inter-actions [3.270 (2) Å].

SELECTION OF CITATIONS
SEARCH DETAIL
...