Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Infect ; 89(2): 106199, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901571

ABSTRACT

The sustained circulation of H9N2 avian influenza viruses (AIVs) poses a significant threat for contributing to a new pandemic. Given the temporal and spatial uncertainty in the antigenicity of H9N2 AIVs, the immune protection efficiency of vaccines remains challenging. By developing an antigenicity prediction method for H9N2 AIVs, named PREDAC-H9, the global antigenic landscape of H9N2 AIVs was mapped. PREDAC-H9 utilizes the XGBoost model with 14 well-designed features. The XGBoost model was built and evaluated to predict the antigenic relationship between any two viruses with high values of 81.1 %, 81.4 %, 81.3 %, 81.1 %, and 89.4 % in accuracy, precision, recall, F1 value, and area under curve (AUC), respectively. Then the antigenic correlation network (ACnet) was constructed based on the predicted antigenic relationship for H9N2 AIVs from 1966 to 2022, and ten major antigenic clusters were identified. Of these, four novel clusters were generated in China in the past decade, demonstrating the unique complex situation there. To help tackle this situation, we applied PREDAC-H9 to calculate the cluster-transition determining sites and screen out virus strains with the high cross-protective spectrum, thus providing an in silico reference for vaccine recommendation. The proposed model will reduce the clinical monitoring workload and provide a useful tool for surveillance and control of H9N2 AIVs.


Subject(s)
Antigens, Viral , Influenza A Virus, H9N2 Subtype , Influenza Vaccines , Influenza in Birds , Influenza A Virus, H9N2 Subtype/immunology , Influenza A Virus, H9N2 Subtype/genetics , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza in Birds/prevention & control , Influenza in Birds/immunology , Animals , Antigens, Viral/immunology , China , Birds
2.
Viruses ; 16(2)2024 01 30.
Article in English | MEDLINE | ID: mdl-38399984

ABSTRACT

The interaction between migratory birds and domestic waterfowl facilitates viral co-infections, leading to viral reassortment and the emergence of novel viruses. In 2022, samples were collected from duck farms around Poyang Lake in Jiangxi Province, China, which is located within the East Asia-Australasia flyway. Three strains of H4N6 avian influenza virus (AIV) were isolated. Genetic and phylogenetic analyses showed that the isolated H4N6 avian influenza viruses (AIVs) belonged to new genotypes, G23 and G24. All isolated strains demonstrated dual receptor binding properties. Additionally, the isolated strains were able to replicate efficiently not only in avian cells but also in mammalian cells. Furthermore, the H4N6 AIV isolates could infect chickens, with viral replication detected in the lungs and extrapulmonary organs, and could transmit within chicken flocks through contact, with viral shedding detected only in oropharyngeal swabs from chickens in the contact group. Notably, the H4N6 AIV could infect mice without prior adaptation and replicate in the lungs with high viral titers, suggesting that it is a potential threat to humans. In conclusion, this study provides valuable insight into the characteristics of H4N6 strains currently circulating in China.


Subject(s)
Influenza A virus , Influenza in Birds , Animals , Mice , Chickens , China , Ducks , Mammals , Phylogeny
3.
Life (Basel) ; 12(9)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36143363

ABSTRACT

In China, H9N2 avian influenza virus (AIV) has become widely prevalent in poultry, causing huge economic losses after secondary infection with other pathogens. Importantly, H9N2 AIV continuously infects humans, and its six internal genes frequently reassort with other influenza viruses to generate novel influenza viruses that infect humans, threatening public health. Inactivated whole-virus vaccines have been used to control H9N2 AIV in China for more than 20 years, and they can alleviate clinical symptoms after immunization, greatly reducing economic losses. However, H9N2 AIVs can still be isolated from immunized chickens and have recently become the main epidemic subtype. A more effective vaccine prevention strategy might be able to address the current situation. Herein, we analyze the current status and vaccination strategy against H9N2 AIV and summarize the progress in vaccine development to provide insight for better H9N2 prevention and control.

SELECTION OF CITATIONS
SEARCH DETAIL